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“We were working late on the time machine in the little makeshift lab upstairs. The moon

was stuck like the whorl of a frozen fingerprint to the skylight. In the back alley, the breaths

left behind by yowling toms converged into a fog slinking out along the streets. Try as we

might, our measurements were repeatedly off. In one direction, we’d reached the border at

which clairvoyants stand gazing into the future, and in the other we’d gone backward to the

zone where the present turns ghostly with memory and yet resists quite becoming the past.

We’d been advancing and retreating by smaller and smaller degrees until it had come to seem

as if we were measuring the immeasurable. Of course, what we really needed was some new

vocabulary of measurement. It was time for a break.”

Stuart Dybek, Paper Lantern
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Abstract
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Computational Methods for Photochemistry in Organic Molecular Crystals

by Miguel RIVERA

Organic molecular crystals hold great promise for photochemical applications such
as photovoltaics, OLEDs or lasers. Understanding the excited states of these sys-
tems is particularly challenging due to the interconnectedness of the excited state
character of the molecular wavefunctions and the environmental interactions within
the condensed phase. The principal obstacle to this understanding is first and fore-
most the methodological gap between periodic simulation methods and molecu-
lar scale excited state formalisms. Multiscale cluster model methods are a viable
extension of the latter, where they promise to recover the crystalline environmen-
tal interactions for excited state calculations whilst representing excitations as lo-
calised defects rather than periodic delocalised perturbations. This is pertinent to
molecular crystals—periodic but non-covalently bonded, displaying quasilocal ex-
citations—however, there is hitherto no software package dedicated their modelling
as clusters.

The principal output of this project is the development and application of such a
program. This thesis begins with a review of the theoretical background necessary
to understand QM:QM’ (Quantum Mechanics:Quantum Mechanics’) cluster models
for excited states, namely quantum electronic structure modelling methods, multi-
scale embedding methods, and molecular photochemistry. Then, three results chap-
ters are presented, each based on a publication carried out during the project. First,
the cluster model method is described, where the electrostatic embedding of the
QM region has been extended to model the Madelung potential. Then, the program
(fromage, the FRamewOrk for Molecular AGgregate Excitations) which implements
this method is presented, along with a suite of analysis tools and command line util-
ities which enable the reproducible investigation of cluster geometries in molecular
crystals. Finally, fromage is used to model an array of luminescent materials and in-
vestigate their competing radiative and nonradiative excited state decay pathways.
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Introduction

The luminescent response of molecular crystals has found applications in several

recent and impactful technologies such as biosensing devices, Organic Light Emit-

ting Diodes (OLEDs), field-effect-transistors, lasers, and photovoltaics.1–8 However,

the theoretical investigation of the photochemistry of solids has not been as reliable

an experimental aid as that of liquids or gases, due to the added complexity as-

sociated with modelling condensed phases. Indeed the calculation of a molecular

excited states is often restricted to the low hundreds of atoms due to its prohibitive

computational cost and theoretical inadequacy for extended correlated systems. On

the other hand, solids are often defined by their long-range interactions, which can

involve moles of collaborating atoms for periodic systems. Molecular condensed

phases held together by van der Waals forces occupy a liminal space in this pic-

ture, where due to their non-bonded nature, they share properties both of crystals

and single molecules, indicating that an overlap in methodologies could be used to

investigate their excited states in a robust way.

In recent years, multiscale modelling methods such as "our Own N-layered Inte-

grated molecular Orbital and molecular Mechanics for Quantum Mechanics:Quantum

Mechanics’" (ONIOM QM:QM’)9,10 have proven a useful asset in modelling the ex-

cited states of molecular crystals.11–17 Cluster model methods represent excitations

as defect perturbations rather than fully delocalised phenomena as in full unit-cell

periodic excited state calculations. They also limit the amount of molecules to be

calculated in the excited state in all cases but the ones with smallest unit cells. Fi-

nally, their use of local orbital basis sets avoids the increased computational cost of

plane-wave Density Functional Theory (DFT) for highly accurate functionals, which

remains a topic of research.18 Hybrid DFT and post-Hartree-Fock methods are there-

fore available within the cluster model paradigm.
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However the conventional ONIOM QM:QM’ method presents several weak-

nesses in modelling the condensed phase:

1. The system-environment interactions between the excitation and the crystal

are truncated to include only the nearest neighbours.

2. The electrostatic interactions are modelled as point charge potentials whose

charge values are not uniquely defined.

3. The response of the environment to the electronic reorganisation of the system

is ignored.

4. They lack an implementation tailored to excited organic molecular crystals.

These shortcomings are elaborated upon in Section 2.8, after presenting the neces-

sary theoretical framework to understand them.

The object of this thesis is to offer solutions to the above problems in QM:QM’

modelling for excited states in organic molecular crystals, in the form of new mod-

elling methods implemented in a software package, and to apply these methods

in order to understand luminescent phenomena in systems previously difficult to

model.

A principal outcome of the doctoral project, along with the publications cited

throughout and this thesis, is the program fromage, the FRamewOrk for Molecular

AGgregate Excitations. Readers interested in the practical applications of the topics

discussed herein can peruse the software project at: https://github.com/Crespo-

Otero-group/fromage.

The present work is split in two parts. Part I focuses on the required theoreti-

cal background to understand the use of cluster models to model photochemistry in

molecular crystals. Chapter 1 introduces the quantum mechanical modelling meth-

ods which are used throughout, Chapter 2 presents the embedding schemes em-

ployed to allow these methods to account for a system’s environment, and Chapter

3 introduces foundational topics in photochemistry which will help contextualise

what it is that the cluster models are to simulate. Then, Part II presents the results

of the thesis. Chapter 4 introduces new ONIOM QM:QM’ cluster models tailored

to model excited molecular crystals, Chapter 5 describes the program which imple-

ments them and other auxiliary tools for analysing these systems, and Chapter 6

https://github.com/Crespo-Otero-group/fromage
https://github.com/Crespo-Otero-group/fromage
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investigates of the competing radiative and nonradiative mechanisms of an array of

luminescent organic crystals, relying on the new methodological advances.

The following publications constitute the broader output of this doctorate:

• M. Dommett, M. Rivera and R. Crespo-Otero, How Inter- and Intramolecu-

lar Processes Dictate Aggregation-Induced Emission in Crystals Undergoing

Excited-State Proton Transfer. J. Phys. Chem. Lett., 2017, 8 (24), 6148–6153.

• M. Rivera, M. Dommett and R. Crespo-Otero, ONIOM(QM:QM’) Electrostatic

Embedding Schemes for Photochemistry in Molecular Crystals. J. Chem. The-

ory Comput., 2019, 15 (4), 2504–2516. Chapter 4

• M. Dommett, M. Rivera, M. T. H. Smith and R. Crespo-Otero, Molecular and

Crystalline Requirements for Solid State Fluorescence Exploiting Excited State

Intramolecular Proton Transfer. J. Mater. Chem. C, 2020, 8 (7), 2558–2568.

• M. Rivera, M. Dommett, A. Sidat, W. Rahim and R. Crespo-Otero, fromage :

A Library for the Study of Molecular Crystal Excited States at the Aggregate

Scale. J. Comput. Chem., 2020, 41 (10), 1045–1058. Chapter 5

• M. Rivera, L. Stojanović, R. Crespo-Otero, Competition between radiative and

nonradiative excited state processes in photoluminescent organic molecular

crystals. in preparation, 2020. Chapter 6

• V. Posilgua, D. Pandya, M. Rivera, R. Crespo-Otero, R. Grau-Crespo, Two-

dimensional porphyrin-based metal organic frameworks for photocatalytic wa-

ter splitting: a computational investigation. in preparation, 2020.
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Chapter 1

Electronic Structure Methods

NB: The notation in this chapter is largely borrowed from the following texts: Modern

Quantum Chemistry: Introduction to Advanced Electronic Structure Theory by Szabo and

Ostlund,19 Time-Dependent Density-Functional Theory: Concepts and Applications by

Ullrich,20 and Quantum Theory of the Solid State: An Introduction by Kantorovich.21

1.1 Wavefunctions Methods

The state function of a nonrelativistic quantum mechanical system is wholly de-

scribed by the Shrödinger equation (SE):

ih̄
d
dt
∣∣Ψ(t)

〉
= Ĥ

∣∣Ψ(t)
〉

(1.1)

Where the
∣∣Ψ(t)

〉
is the time dependent wave function, and Ĥ is the Hamiltonian

operator. In a system of N electrons and M nuclei, Ĥ has the form:

Ĥ = −
N

∑
i=1

1
2
∇2

i −
M

∑
A=1

1
2MA

∇2
A −

N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
rij

+
M

∑
A=1

M

∑
B>A

ZAZB

rAB
(1.2)

Where ∇2
i and ∇2

A are the Laplacian operators acting on electrons and nuclei

respectively, ZA is the charge of nucleus A and rAB is the distance between points A

and B.

In an equilibrium, the quantum system becomes time independent by defini-

tion, and has a simpler equation of state, the time-independent Shrödinger equation
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(TISE):22

Ĥ |Ψ〉 = E |Ψ〉 (1.3)

Where |Ψ〉 is the time independent wave function and E its associated energy.

1.1.1 The Born-Oppenheimer Approximation

The SE is analytically unsolvable for any system with more than two particles. We

must therefore employ approximations to model chemically meaningful situations.

Nuclei are several orders of magnitude heavier than electrons, suggesting that

the Hamiltonian can be split into an electronic and a nuclear term. The electronic

term treats nuclei as static potentials, and can yield an electronic wavefunction, un-

correlated with the nuclear one, which does not take into account the nuclear kinetic

and internuclear potential terms of Equation 1.2:

Ĥel = −
N

∑
i=1

1
2
∇2

i −
N

∑
i=1

M

∑
A=1

ZA

riA
+

N

∑
i=1

N

∑
j>i

1
rij

(1.4)

ĤelΦ = EelΦ (1.5)

This is known as the Born-Oppenheimer (BO) approximation, and allows for

the nuclear coordinates to be considered only parametrically when calculating the

energy of a given nuclear geometry.23

1.1.2 Many-Electron Wavefunctions

Electrons are fermions of spin 1/2. Therefore the wavefunction which describes an

electron should contain both a spatial part (ψ(r)), and a spin part (α(ω) or β(ω) for

spin up or down). Single electron wavefunctions are therefore called spin orbitals

and, for example for spin up, are written:

χ(x) = ψ(r)α(ω)

|χ〉 =
∣∣ψ〉 |α〉 (1.6)

Where the x coordinate contains both the position r and the spin ω.
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A many electron wavefunction should be constructed taking into account the

properties of fermions that they are antisymmetric under exchange. To fulfil Ψ(x1, x2) =

−Ψ(x2, x1), we can exploit the property of the matrix determinant, which changes

sign with the interchange of row or column. This kind of wavefunction is called the

Slater determinant:24

ΨSD(x1, x2, . . . , xN) = (N!)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)
...

...
...

χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.7)

In Dirac notation, we adopt the convention ΨSD(x1, x2, . . . , xN) = |x1x2 . . . xN〉.

1.1.3 The Hartree-Fock Method

We now wish to find a method to compute all spin orbitals of the electronic system’s

Slater determinant to obtain the most accurate wavefunction possible. To do so, for

each spin orbital, we write a one-electron secular equation:

f (1)χ(x1) = εχ(x1) (1.8)

f (1) is called the Fock operator, and is written:

f (1) = h(1) + vHF(1) (1.9)

Where h(1) is the one-electron core Hamiltonian:

h(1) = −1
2
∇2

1 −
M

∑
A=1

ZA

r1A
(1.10)

And vHF(1) is the Hartree-Fock (HF) potential, associated with the multi-electronic
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interaction energy. It, in turn, is comprised of Coulomb and exchange electron-

electron interactions, and is expressed:

vHF(1) = ∑
b
(Jb(1)−Kb(1)) (1.11)

Where the Coulomb operator Jb(1) expresses the electrostatic potential on the

electron 1 in orbital χa from electron 2 in orbital χb:

Jb(1) =
∫ |χb(2)|2

r12
dx2 (1.12)

The exchange operator, on the other hand, is a nonlocal operator; it depends on the

value of χa at points of space different from x1 as follows:

Kb(1)χa(1) =
[∫

χb(2)∗r−1
ij χa(2)dx2

]
χb(1) (1.13)

In its full form, the Fock operator is therefore:25–27

f (1) = −1
2
∇2

1 −
M

∑
A=1

ZA

r1A
+ ∑

b
(Jb(1)−Kb(1)) (1.14)

1.1.4 Atomic Orbital Basis Sets

The two above operators involve the integration of products of spatial orbitals. If

we could decompose these orbitals in an infinite number of functions spanning all

of space, this would yield an exact spin orbital within the constraints of Hartree-

Fock theory. However, due to the computational constraints of our finite central

processing units, we must settle for an easily integrable set of functions which are

arranged in a physically meaningful way.

In the context of a molecular system, it makes most sense to employ sets of atom-

centred functions which have the shapes of individual electrons about a particular

nucleus. These are called atomic orbitals, and their linear combination makes up a

molecular orbital. If our set has K basis functions, we write spatial orbital ψi:

ψi =
K

∑
µ=i

Cµiφµ (1.15)
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For ease of integration, we often use a solutions of the hydrogen atom multi-

plied by Gaussian radial component. This is called a Gaussian Type Orbital (GTO).

However, the behaviour of Gaussian functions in the limit of large distance does not

necessarily reflect the behaviour of atomic orbitals, which instead follow an inverse

law, thus in practice we use linear combinations of several GTOs, whose coefficients

are called contractions, explaining the name Contracted Gaussian Functions (CGFs).

Oftentimes, the valence electrons are assigned more than one CGF, to obtain a

better resolution of the interatomic interactions. Basis sets with several CGFs per

valence electron are called split valence, or Pople basis sets if they are written in the

form X-YZG. For example, the basis set 6-31G has six GTOs per core electron basis

function, and two CFGs for valence electrons, one with three GTOs and one with

one GTO.

Additionally, the basis sets may be complemented by diffuse Gaussians to accu-

rately describe the region of the atom far from the nucleus, or asymmetric functions

to represent the polarisability of the atom. A 6-31G basis set complemented by dif-

fuse and polarisable functions is written 6-31G(d,p).

1.1.5 The Roothaan Equations

Armed with our basis set, we are able to re-write the HF equation in matrix form by

enclosing the Fock operator with basis functions. We write:

FC = SCε (1.16)

Where the Fock matrix has elements Fµν =
∫

φ∗µ(1) f (1)φν(1)dr1, S is the overlap

matrix with elements Sµν =
∫

φ∗µ(1)φν(1)dr1, which account for the nonorthogonal-

ity of the basis, C defines the basis coefficients of the spin orbitals in Equation 1.15,

and ε is the diagonal matrix of orbital energies:

ε =


ε1 0

. . .

0 εK

 (1.17)
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The equations originating from the canonical Equation 1.16 are called the Roothaan

equations. They can be manipulated to become orthogonal, and adopt a solvable

form without the interfering overlap matrix. A particularity of the Roothaan equa-

tions is that since the Fock matrix contains the HF potential, it depends on the spin

orbitals, which are themselves defined in C. This indicates that the Roothaan equa-

tions must be solved iteratively, in order to find a self-consistent set of spin-orbitals.

This procedure is known as the Self-Consistent Field (SCF) method.

The SCF method allows us to obtain a set of K spatial orbitals and thus 2K spin

orbitals. If we construct a wavefunction which is the Slater determinant of the N

lowest spin orbitals, we obtain the HF ground state:

|Ψ0〉 = |χ1χ2 . . . χK〉 (1.18)

1.1.6 Electronic Correlation

The N spin orbitals which make up the HF ground state are called occupied orbitals,

while all of the higher energy spin orbitals are virtual orbitals.

We can construct new Slater determinants by swapping out occupied orbitals

for virtual orbitals from the HF ground state. These are called excited Slater de-

terminants, and are characterised by the amount of virtual orbitals included at one

time, for instance, single excitation, double excitation and so on. The real wave-

function has the conformational space to adopt any combination of excited determi-

nants, therefore, ignoring the size of the basis set, the best possible description of

the nonrelativistic BO wavefunction would be a linear combination of all HF Slater

determinants.

|Φ〉 = c0 |Ψ0〉+ ∑
ra

cr
a |Ψr

a〉+ ∑
a<b
r<s

crs
ab
∣∣Ψrs

ab
〉
+ ∑

a<b<c
r<s<t

crst
abc

∣∣∣Ψrst
abc

〉
+ . . . (1.19)

Where
∣∣∣Ψ{µν...}
{αβ...}

〉
is the Slater determinant with the excitations α → µ, β → ν . . .

with the corresponding expansion coefficient c{µν...}
{αβ...}. |Φ〉 is called the full configura-

tion interaction (CI) wavefunction.
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Due to the explosively increasing number of terms of the full CI wavefunction, it

is impractical to calculate for systems of more than a few electrons. However, it gives

us a formal definition for the error in the HF ground state. We define the correlation

energy as the difference between the energies of the HF ground state (E0) and full CI

wavefunctions (E0):

Ecorr = E0 − E0 (1.20)

Several methods have been developed to recover correlation energy by including

the effect of excited determinants in the HF ground state.

1.1.7 Møller Plesset Perturbation Theory

Rayleigh–Schrödinger perturbation theory is a numerical method in quantum me-

chanics which corrects small errors in approximate wavefunctions in the form of an

asymptotic series. If we use the Fock operator, shifted by the sum of the orbital en-

ergies, as the the reference wavefunction, then the correlation energy can act as the

perturbation.28

The order of the asymptotic series increases with cost and accuracy of the method.

At first order, this energy—called Møller Plesset 1 (MP1)—matches the HF ground

state (EMP1 = E0). At second order, the energy takes the form:

EMP2 = 2
N/2

∑
abrs

〈ab|rs〉 〈rs|ab〉
εa + εb − εr − εs

−
N/2

∑
abrs

〈ab|rs〉 〈rs|ba〉
εa + εb − εr − εs

(1.21)

Where we have adopted the shorthand:

〈
ij
∣∣kl
〉
=
〈

χiχj

∣∣∣χkχl

〉
=
∫

χ∗i (x1)χ
∗
j (x2)r−1

12 χk(x1)χl(x2)dx1x2 (1.22)

And εi is the energy of orbital i. The MP3 and MP4 energies have a more complex

form and are not as widely used as MP2 due to the increased computational cost

with modest increase in accuracy. Furthermore the perturbative expansion of the

HF wavefunction diverges when degenerate energy corrections occur. Olsen and

Jørgensen showed that the energy F− diverged starting at only third order.29
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1.1.8 Coupled Cluster

Coupled cluster techniques are an alternate method of recovering electron correla-

tion, where excited determinants are directly used. We introduce the cluster operator

T̂ = T̂1 + T̂2 + T̂3 + · · · such that T̂n is the operator of all of the excitations of nth

order. The operation of T̂n on wavefunctions is computationally costly at high n,

thus we often truncate the sum to first or second order. The order of the truncation

defines the approximation, where the first order is the Coupled Cluster method for

Singles (CCS) and the second order is for Singles and Doubles (CCSD).

The coupled cluster wavefunction is written:30

|ΨCC〉 = eT̂ |Ψ0〉 (1.23)

Operating on a wavefunction with eT̂ has useful properties due to the expansion

of the exponential function:

eT̂ = 1 + T̂ +
1
2!

T̂2 + · · · (1.24)

Thus, in CCSD, even when T̂ = T̂1 + T̂2, we are still allowing for contributions from

excitations of higher order than two due to the exponents appearing on T̂ in the

expansion. As we employ higher order forms of coupled cluster such as CCSD(T),

we allow a larger contribution to higher order excitations, which are naturally scaled

down in the expansion above.

CCSD(T) considers triple excitations perturbatively, and is often used as a bench-

mark method. Indeed its accuracy has been shown to be in the range of 1 kcal/mol

for small molecules.31

1.1.9 Multireference Methods

All of the methods introduced thus far have used the HF ground state as the refer-

ence wavefunction. In a closed-shell system with an even number of electrons, this

wavefunction is composed of all of the occupied spin orbitals, which are weighted



1.1. Wavefunctions Methods 43

equally in the Slater determinant. One could construct alternate Slater determi-

nants with different expansion coefficients for the spin orbitals—called occupan-

cies—which encompass some of the full CI wavefunction which was earlier ratio-

nalised as a collection of differently excited determinants. This paradigm treats elec-

tronic excitations of the wavefunction in a very different way than single-determinant

based methods (which will be described in Section 1.4). Here, not only do occupan-

cies change for different roots of the multireference secular equation, the molecular

orbitals themselves would also be state-specific.

Our target wavefunction would be a combination of these partially occupied

Slater determinants, except we must first impose an orthogonality condition to al-

low for this decomposition. We can produce a symmetry adapted linear combina-

tion of partially occupied Slater determinants, called a Configuration State Function

(CSF). CSFs can then be, in turn, combined together variationally to produce a mul-

tireference CI (MRCI) wavefunction. The amount of CSFs determines the cost and

accuracy of the MRCI procedure. Overall, the wavefunction will have the form:

|ΨMRCI〉 = ∑
µ

Cµ

∣∣µ〉 (1.25)

Where Cµ are the occupancies and
∣∣µ〉 are the CSFs.32

We can reduce the amount of necessary CSFs by optimising the spin orbitals

themselves as the procedure is carried out. This is known as multireference SCF

(MRSCF). Furthermore, we usually limit the amount of CSFs to all of those arising

from a certain number of electrons within a certain number of spin orbitals. These

spin orbitals are called the active space and the method, Complete Active Space SCF

(CASSCF).33–35 We use the notation CASSCF(a,b), indicating that we consider the

CSFs which vary the occupation of a electrons in b orbitals. Figure 1.1 gives a visual

representation of the CASSCF orbital arrangement, as compared to a closed shell HF

arrangement.

CASSCF recovers a large amount of correlation due to near-degenerate config-

urations, which are ignored in HF. However it does not encompass all of the low

excitation determinants, as is for example done in CCSD. To correct for this type of

correlation, we can apply a perturbative correction of second order to the multistate
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HOMO

LUMO

: Cμ=2
: 0<Cμ<2

HF CASSCF

(2,2) Active Space

FIGURE 1.1: Occupancy diagram of a closed shell Hartree-Fock
wavefunction compared to a CASSCF(2,2) wavefunction. The

occupancies Cµ are shown to be partial in the active space.

CASSCF wavefunction. This produces the Complete Active Space Perturbation The-

ory 2 method, CASPT2.36,37 Alternate implementations, such as CASMP2 where the

correlation from an MP2 calculation is used, are also possible.38

1.2 Density Functional Theory

The previous section lists some of the most successful methods of calculating elec-

tronic properties of chemical systems by approximating their wavefunctions. How-

ever some of the most popular quantum chemistry methods today avoid calculating

the wavefunction altogether, in favour of focusing on the electronic density as the

principal state function.

1.2.1 The Hohenberg-Kohn Theorems

If we wish to express the energy of a system of N interacting electrons under some

external potential vext, we can write:

Evext [vext, n] =
∫

n(r)vext(r)dr + F[n] (1.26)
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Where n is the electron density and F[n] is the universal functional which maps n to

the energy of the enclosed N interacting electron system.

Hohenberg and Kohn proved in the 1960s two fundamental theorems related to

the electronic density n:39

1. The external potential of a quantum system vext has a one-to-one correspon-

dence with its electron density n(r).

2. The density which minimises the total energy of the system is the real ground

state density.

Theorem 1 implies that the energy of the system is a functional of its electron

density, Evext [vext, n] ≡ Evext [n]. Theorem 2 states that we can find this density by

evaluating its energy at each point, and varying it until we have found the minimum.

This framework is known as Density Functional Theory (DFT). However, since the

form of F[n] is unknown, we must employ an approximation.

1.2.2 Kohn-Sham theory

The universal functional F[n] is composed of the kinetic energy of the electron cloud

T[n] and the electron-electron interactions W[n]. The kinetic part is nontrivial to

solve for electron densities, and the second one can be chosen to be the Coulomb

interaction. In their wavefunction operator form, we would write:

F̂ = T̂ + Ŵ (1.27)

Where now the kinetic energy operator T̂ = −∇2

2 is easy to solve for wavefunc-

tions of a known form. We begin our model by imagining a set of N non-interacting

electrons submitted to a fictitiousvs(r). We can write their secular equations as:40

(T̂ + vs(r))ϕi(r) = (−∇
2

2
+ vs(r))ϕi(r) = εi ϕi(r) (1.28)

Where the eigenfunctions ϕi(r) are known as the Kohn-Sham (KS) orbitals. The

idea is to construct a KS wavefunction ΨKS(x1, . . . , xN) from the Slater determinant

of the N/2 lowest energy spatial KS orbitals. For this to work, we need vs(r), which
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we call the KS potential, to accurately represent all of the electron-electron inter-

actions which, based on the first Hohenberg-Kohn theorem, would yield a unique

electron density:

n(r) =
∫
|ΨKS(x1, . . . , xN/2)|2dx1 . . . dxN/2 = 2

N/2

∑
j
|ϕi(r)|2 (1.29)

The second Hohenberg-Kohn theorem requires this density to minimise the total

energy functional. Fortunately, there is a systematic way of improving the accuracy

of the wavefunction, and thus variationally reducing its energy. The external poten-

tial vs(r) must depend on the solutions of Equation 1.28. This means that they can

be solved iteratively, in an SCF procedure analogous to that of HF. Equations 1.28

and 1.29 are known as the KS equations, and form the basis of KS DFT.

1.2.3 The Kohn-Sham Potential

We have yet to comment on the form of vs(r). Since it depends on the density, we

write it as a functional:

vs[n](r) = vext(r) + vHar[n](r) + vXC[n](r) (1.30)

Where the first term is the external potential, including nuclear potentials un-

der the BO approximation but also any external imposed potentials vfield(r) to the

system:

vext(r) = vfield(r) +
NZ

∑
i

Zi

|Ri − r| (1.31)

Where we have considered NZ nuclei at positions Ri with charge Zi.

The second term of Equation 1.30 is the Hartree potential:

vHar[n](r) =
∫ n(r′)
|r− r′|dr′ (1.32)

Which represents the electron-electron Coulomb potential.

The final term of Equation 1.30 should represent all other electron-electron in-

teractions, namely exchange and correlation. We write it as the derivative of the
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exchange-correlation functional EXC[n]:

vXC[n](r) =
δEXC[n]

δn(r)
(1.33)

We write it in this form because we will need the exchange-correlation functional

when calculating the energy of the KS DFT system.

1.2.4 The Exchange-Correlation Functional

EXC[n] does not have a known exact solution, and we therefore adopt certain ap-

proximations in order to carry out DFT calculations.

Local Density Approximation

The simplest non-trivial exchange-correlation functional uses the analytical solution

for the exchange energy density of a homogeneous electron gas eh
x(n(r)). The corre-

lation part of the energy, eh
c (n(r)), has no known solution but one can parameterise

it to match those of very accurate quantum Monte Carlo calculations.41

We can write the functional as the integral of the two energy densities:

ELDA
XC [n] =

∫
eh

x(n(r)) + eh
c (n(r))dr (1.34)

This functional is named the Local Density Approximation (LDA), since at each

point, it only conveys the non-Coulombic many-electron interactions of an uniform

electron gas with the density of the point. Surprisingly, this approximation still re-

covers the correct general structure of many bulk solids, for instance, though the

error in energy is in the range of 1 eV per atom, which renders it poorly suited to

quantitative prediction.42

Generalised Gradient Approximation

LDA functionals can be improved by using the exchange and correlation from the

fictitious system of the electron gas of constant gradient, instead of constant density.

In the general terms, these Generalised Gradient Approximation (GGA) functionals
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can be written:

EGGA
XC [n(r)] =

∫
eGGA

XC (n(r,∇n(r))dr (1.35)

The GGA exchange-correlation energy density eGGA
XC can take many forms. For

example, one of the most popular GGA functionals, developed by Perdew, Becke

and Ernzerhof43 (PBE), was developed in order to be completely ab intio and satis-

fies as many exact properties of the KS wavefunction as possible. For instance, it is

favoured by the community which simulates metal-organic frameworks for its af-

fordability—given unit cells of up to hunders of atoms—and accuracy in modelling

bond angles with a precision greater than 0.1 Å.44

One could also list the Becke 1988 exchange functional, B8845, or the Lee-Yang-

Parr correlation functional (LYP)46 which combine into the BLYP functional.

Hybrids

A further improvement to consider is that of including exchange from a wavefunction-

based calculation into our results. Indeed HF calculations have no correlation by

definition but provide exact nonlocal exchange:

eexact
x = −1

2 ∑
σ

Nσ

∑
i,j=1

ϕ∗iσ(r
′)ϕjσ(r′)ϕσi(r′)ϕ∗jσ(r

′)dr′

|r− r′| (1.36)

Where the σ indices represent spin up or down.

By mixing this exact exchange with different proportions of LDA and GGA terms,

one can construct hybrid exchange-correlation functionals. PBE0 combines PBE

with exact exchange47 for increased accuracy. The Heyd–Scuseria–Ernzerhof (HSE)

functional screens the exchange part of PBE0 with an error function for added effi-

ciency, calculating the long-range exchange with PBE.48,49 B3LYP is a three parame-

ter exchange-correlation functional which mixes LDA and B88 exchange with LDA

and LYP correlation.50 B3LYP is currently the most used density functional51, and

predicts bond lengths of bulk TiO2 with an accuracy of 0.01Å, compared to 0.1 Å for

LDA.
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Range Separated Hybrids

Other combinations of exchange and correlation terms are possible, and they can be

screened by a distance parameter, in order to assign short-range energies to the best

performing short-range functionals and vice versa for long-range ones. Here, we will

only mention ωB97X-D,52 which uses the Becke 97 short-range GGA functional53

and combines it with long-range HF exchange and a small portion of short-range H

exchange. It reproduced CC2 excitation energies with a 0.2 eV accuracy on biochro-

mophores, indicating a high reliability.54

The long-range behaviour of exchange-correlation interactions is particularly rel-

evant to intermolecular processes, since the interactions between monomers is be-

yond the distance of atomic bonds. In particular, excited state wavefunctions are typ-

ically more diffuse than their corresponding ground state, further justifying the use

of range-separated functionals. Important delocalised phenomena such as charge

transfer require such tools.

Dispersion Correction

Due to the parameterisation of the correlation functional at the root of LDA the-

ory, KS DFT often omits the long-range correlation between electrons which results

in dispersion (sometimes called van der Waals interaction), even when mixing HF

exchange.

Grimme’s D2 method55 accounts for the dispersion of the system a posteriori,

allowing for the correction of any of the functionals described above. In fact the D

in ωB97X-D implies that this functional already uses Grimme’s D2 correction.

1.2.5 Density Functional Tight-Binding

DFT is also the basis of a variety of semi-empirical methods, which aim to combine

the efficiency of classical simulation with the accuracy of an electronic description.

Prominently, the Density Functional Tight-Binding (DFTB) model eschews the de-

termination of a KS density. Instead, it uses atomic KS orbitals, which have been

previously parameterised through DFT calculations. The atomic orbitals are then

combined in a Taylor expansion of the exchange-correlation functional.56,57
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The order of this Taylor expansion ranges in practice from one to three, where

the first order energy expression is:

EDFTB1 = ∑
i

niεi +
1
2

Vrep
ab (1.37)

Where ni is the occupation of KS orbital i, εi is its orbital energy, and Vrep
ab are

repulsive pair potentials either fitted from DFT calculations or from empirical data.58

For organic systems, routine calculations usually use the second order, where

density fluctuations are considered for all atoms. In this case, the atomic charge den-

sity fluctuations are modelled as exponentially decaying distributions with a decay

parameter τa fitted to DFT calculations:

δρa(r) ≈ ∆qa
τ3

a
8π

e−τa|r−Ra| (1.38)

Where ∆qa is the fluctuation in partial charge on a given atom a, and Ra is the posi-

tion of the atomic nucleus.

The energy becomes:

EDFTB2 = EDFTB1 +
1
2 ∑

ab
∆qa∆qbγab(τa, τb, Rab) (1.39)

Where γij(τi, τj, Rij) is an analytical function resulting from evaluating the Hartree

energy between the decaying charge densities and Rij is the distance between two

atomic centres.56

Second order DFTB can be very accurate when applied to well-studied systems,

since it is semi-empirical. Indeed it matches the accuracy of B3LYP in calculating

geometrical parameters of TiO2 nanostructures.59

1.3 Solid State Electronic Structure

Not only has DFT found success in molecular systems, it has also been formulated

to address problems in systems with a natural periodicity such as crystals, surfaces

or polymers.
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a2
a1 RS

FIGURE 1.2: Schematic representation of the role of the unit cell
in generating a lattice. In this 2-D example, a1 and a2 are lattice

vectors, and Rs is an atomic position in the unit cell.

1.3.1 The Periodic Lattice

The defining feature of a crystal is that its structure has a given periodicity. We call

the smallest repeating unit constituting the whole crystal by translations the unit

cell. These translations determine the shape of the unit cell, and we therefore usually

define a unit cell by it’s three primitive lattice vectors a1, a2, and a3.

Any atom within the unit cell is therefore located at:

Rs = s1a1 + s2a2 + s3a3 (1.40)

Where 0 ≤ si < 1. By definition, given an arbitrary number of transitions n1, n2 and

n3 such that ni ∈ Z, there are atoms of the same type at all positions:

R′ = R + n1a1 + n2a2 + n3a3 ≡ R + Ln1,n2,n3 (1.41)

Where we have defined Ln1,n2,n3 as an arbitrary lattice translation. By this process,

an entire lattice can be constructed as shown in Figure 1.2.

1.3.2 Bloch’s Theorem

We now wish to describe the wavefunction of electrons in a periodic array of nuclei,

which is the application of the BO approximation to the crystal. The Schrödinger
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equation is in this case:

(
−∇

2

2
+ V(r)

)
ψ(r) = Eψ(r) (1.42)

Where the periodic potential is V(r) = V(r + Ln1,n2,n3) for any lattice translation.

It can be shown that electrons in periodic potentials have wavefunctions in a

basis of the form:

ψnk(r) = eik·runk(r) (1.43)

Where n is the integer energy level of the wavefunction, k is called the crystal

wave vector and has a dimension of inverse distance, and unk(r) is a function with

the periodicity of the potential. These basis functions are called Bloch waves.

1.3.3 Reciprocal Space

We now examine what would happen to the Bloch wave if k is shifted by any vector

bn such that bi · aj = 2πδij, where the set of an vectors defines the periodicity of the

potential.

ψn(k+b)(r) = ei(k+b)·run(k+b)(r)

= eik·reib·run(k+b)(r)

= eik·rũn(k+b)(r)

(1.44)

For the cases where r′ = Ln1,n2,n3 , we have eib·r′ = ei2nπ = 1, which means that

the function ũn(k+b)(r) = eib·run(k+b)(r) has the same periodicity as V(r). ψn(k+b)(r)

can therefore be expressed as a Bloch wave with wave number k, and presuming

non-degenerate Bloch states, ũn(k+b)(r) = unk(r) and ψn(k)(r) = ψn(k+b)(r). This

result can also be shown to hold for degenerate Bloch states. In other words, k is

periodic with respect to the vectors bn.

We call the inverse distance space of the lattice reciprocal space. It follows that the

vectors bn are reciprocal primitive lattice vectors which form a space analogous to

the primitive cell called the 1st Brillouin Zone (1BZ).
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1.3.4 k-point Sampling

We have observed that electronic wavefunctions in crystals are expressed in the basis

of Bloch waves. Therefore, setting aside the calculation of unk(r), the representation

of the wavefunction can be improved by increasing the size its basis, and therefore

considering Bloch waves of more k values. The cost of a periodic DFT calculation

is multiplied for each k-point considered, so it is important to calculate as few as

necessary to represent the required properties of the system.

k-points can be understood as representing the periodicity of the material, there-

fore unit cells with a small lattice vector a1 should have a large amount of k-points

in the b1 direction, and vice versa. In practice, we often use a grid of N1xN2xN3 k-

points, where the Ni values are chosen to be approximately inversely proportional

to the lengths of the lattice vectors a1, a2, and a3. This defines the Monkhorst-Pack

grid.60

1.3.5 Plane Wave Basis Sets

We now wish to calculate the unk(r) term of Equation 1.43 using DFT. As in the case

of molecular systems, periodic systems need to be decomposed in a basis in order to

calculate the matrix elements of the external potential.

Since the wavefunction is periodic, its basis functions must also have a period-

icity. We choose to use plane waves because their periodicity is easily tunable and

their products can be integrated very efficiently using fast Fourier transforms.

unk(r) = ∑
G

cG,keiG·r (1.45)

Where G are reciprocal lattice vectors. As |G| becomes larger, the expansion

coefficients cG,k become smaller and therefore these terms of the expansion less im-

portant. Since we need to select a finite number of G values for computation, we

choose a cut-off value Gcut such that we only include plane waves with |G| ≤ Gcut

in the expansion.

This method works well for valence electrons, however since the energies of the

electrons nearest to the nuclei are comparatively very high, we would need basis

functions of a higher frequency to represent them and therefore a very high Gcut. To
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avoid this, we usually avoid representing core electrons altogether, since they are

unlikely to be involved in the chemical processes we are interested in. Instead, we

represent the combined effect of the nucleus and the core electron’s screening by

functions called pseudopotentials.

1.3.6 The Ewald Potential

This subsection is adapted from ONIOM(QM:QM’) Electrostatic Embedding Schemes

for Photochemistry in Molecular Crystals by Miguel Rivera, Michael Dommett, and

Rachel Crespo-Otero.61

An additional subtlety of performing DFT calculations in periodic systems comes

from the new form of the nuclear potential. Indeed, the external potential of the KS

equations has a component which is traditionally composed of atom centred point

charges of the value of the atomic number. This is the second term in Equation 1.31.

However in a periodic system, there are infinite nuclei involved, and the potential is

therefore impossible to compute through direct summation.

A naïve approach would be to choose a large spherical region of the crystal,

and, for each KS equation, consider only the nuclei of the crystal that fall within the

chosen radius. Unfortunately, the Madelung sum—the electrostatic potential of the

whole lattice—is known to be a slowly and conditionally convergent property.21,62

The former is due to the fact that Coulomb decay as an inverse law with distance,

which is much further reaching than other forms of interatomic interactions like

exchange. The latter can be understood from the fact that lattice has discrete sites in

space which are not equally spaced from a particular point. Thus a radial truncation

will necessarily be imbalanced towards some directions more than others.

The long-range Coulomb interactions with distant atomic centres are therefore

traditionally evaluated using the Ewald summation technique63–65. The expression

for the Ewald potential at position r is:

VEwald(r) = ∑
Ls

qs
erfc (γ|r− L− Rs|)
|r− L− Rs|

+
4π

vc
∑

G 6=0

1
G2 e−G2/4γ2

∑
s

qseiG(r−Rs)

 (1.46)
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Where L and G are the real and reciprocal space lattice translations, qs are the charges

of each site s of the unit cell at positions Rs, γ is the Ewald constant and vc is the

volume of the unit cell. Here, the direct sum electrostatic potential has been recast as

a sum of two rapidly converging series. Short-range Coulomb terms are calculated

in direct space and long-range interactions using a Fourier series in reciprocal space.

To evaluate the Ewald potential on a lattice site Ri, the self-potential of the charge

must be subtracted to avoid a singularity which amounts to replacing the L = 0 and

s = i case of the first term of Equation 1.46 with − 2γqi√
π

.21,62,66,67

1.4 Excited States

The methods outlined above focused on obtaining accurate and affordable ground

state properties of chemical systems. However many processes of practical interest

involve excited state systems which require specialised methods to model. We will

first show how to extend DFT to the excited state and then focus on wavefunction

based methods.

1.4.1 Linear-Response

We wish to obtain observable quantities, such as the density, from an optically ex-

cited system. This can be understood as investigating a system which starts in the

ground state and is perturbed by a time-dependent potential v(r, t) infinitesimally

later than a time t0, where this potential will have the same frequency as the incident

photon.

The difference in density between a time t and the initial perturbation time t0 is

called the response of the density (n(t) − n(t0)). This response can be expanded in

powers of v(r, t):

n(t)− n(t0) = n1(t) + n2(t) + . . . (1.47)

The first and largest term of this expansion is called the linear response of the

density. It is written:

n1(r, t) =
∫ ∞

0
dt′
∫

drχnn(r, r′, t− t′)v1(r, t) (1.48)
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Where v1(r, t) is the linearised time-dependent potential and χnn(r, r′, t − t′) is

the density-density response function defined as:

χnn(r, r′, t− t′) = −iθ(t− t′) 〈Ψ0| [n̂(r′, t− t′), n̂(r)] |Ψ0〉 (1.49)

Where we have introduced the density operator n̂(r) = ∑i δ(r − ri) where the

summation is over all electrons.

This expression can be recast into the frequency domain and shown to depend on

the excitation energies of the system Ωn = En− E0 where the energies are associated

with the excited state wavefunctions Ψn:

χnn(r, r′, ω) = lim
η→+0

∞

∑
n=1

{
〈Ψ0| n̂(r) |Ψn〉 〈Ψn| n̂(r′) |Ψ0〉

ω−Ωn + iη
− 〈Ψ0| n̂(r′) |Ψn〉 〈Ψn| n̂(r) |Ψ0〉

ω + Ωn + iη

}
(1.50)

Where ω is the frequency of the perturbation, and η is a vanishingly small pos-

itive scalar chosen to avoid unphysical infinite response values. This is known as

the Lehmann representation, and shows that if we can obtain an expression for

χnn(r, r′, ω), we know that its poles will yield the excitation energies of the system.

1.4.2 Time-Dependent Density Functional Theory

We wish to use some of the pre-established formalisms of DFT in our efforts to

define a DFT density-density response function, hopefully culminating in a time-

dependent DFT (TDDFT). We begin with the fundamental theorem of TDDFT:

• The time-dependent external potential of a quantum system v(r, t) has a one-

to-one correspondence with its time-dependent electron density n(r, t) up to a

time-dependent phase.

This is known as the Runge-Gross theorem and it ensures that the correspondence

established before t0 by the first Hohenberg-Kohn theorem is maintained during the

perturbation of the system. The second theorem can be cast into the time-dependent

case by showing that the time-dependent density determines the action of the quan-

tum system, which itself should be minimised by the variational theorem for the real

wavefunction.
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1.4.3 The Kohn-Sham Response Function

We are therefore justified in taking the steps of calculating the density-density re-

sponse function in the non-interacting KS system. The principal difference will be

that the linearised external potential has the form:

vs1 = v1(r, t) +
∫ n1(r, t)
|r− r| dr + vxc1(r, t) (1.51)

Where the first term is the linearised perturbation potential, the second is the

Hartree potential, and the third the linearised exchange-correlation potential:

vxc1(r, t) =
∫∫

δvxc[n](r, t)
δn(r′, t)

∣∣∣∣
n(r,t0)

n1(r, t′)drdt′ (1.52)

Where we use the shorthand:

fxc(r, t, r′, t′) =
δvxc[n](r, t)

δn(r′, t)

∣∣∣∣
n(r,t0)

(1.53)

This is called the exchange-correlation kernel and is analogous to the exchange-

correlation functional in ground state DFT, where the same approximations can be

employed. In practice, the time dependence of this kernel implies that it depends on

all past fluctuations of the density. An approximation to circumvent this tremendous

requirement is to fix the kernel to its value at the beginning of the perturbation. This

constitutes the adiabatic local density approximation.

A further improvement is to cast the kernel into the frequency domain, then

written fxc(r, r′, ω), simplifying our task by using the periodicity of the perturbation.

This is called the frequency dependent LDA.

Still in the frequency domain, we can construct a KS linear response of the den-

sity by means of a Fourier transform:

n1(r, ω) =
∫

χs(r, r′, ω)

[
v1(r′, ω) +

∫ ( 1
|r′ − x| + fxc(r′, x, ω)

)
n1(x, ω)dx

]
dr′

(1.54)
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Where the KS density-density response function is:

χs(r, r′, ω) =
∞

∑
j,k=1

( fk − f j)
ϕ0

j (r)ϕ0∗
k (r)ϕ0∗

j (r′)ϕ0
k(r
′)

ω−ωjk + iη
(1.55)

Where f j and fk are the occupancies of the KS orbitals at time t0, ϕ0
j and ϕ0

k , in

the ground state and ωij = εj − εk where εj and εk are the orbital energies. Ideally,

the KS original excitation energies ωij should match the real excitations Ωn of Equa-

tion 1.50, relying upon the fact that the KS orbital transitions form a sufficient basis

to represent this excitation. This hinges upon the form of the exchange-correlation

functional, which explains its importance.

1.4.4 The Casida Formulation

We would like to formulate the above linear response problem into an eigenproblem,

which is solvable in a direct way.

We first construct a coupling-matrix for the KS orbital transitions and add a spin

index to each KS orbital:

Kjkσ,j′k′σ′ =
∫∫

ϕ0∗
jσ (r)ϕ0

kσ(r)
(

1
|r− r′| + fxc(r, r′, Ω)

)
ϕ0∗

j′σ′(r
′)ϕ0

k′σ′(r
′)dr′dr (1.56)

We can write the tensors:

Aiaσ,i′a′σ′(Ω) = δii′δaa′δσσ′ωa′i′σ′ + Kiaσ,i′a′σ′(Ω)

Biaσ,i′a′σ′(Ω) = Kiaσ,i′a′σ′(Ω)
(1.57)

Each element of the Aiaσ,i′a′σ′(Ω) and Biaσ,i′a′σ′(Ω) tensors represents an individ-

ual KS orbital transition. We can build an anti-Hermitian eigenvalue problem which

will tell us the contributions from each of these transitions to a given excitation:

A B

B A


X

Y

 = Ω

−1 0

0 1


X

Y

 (1.58)

Where the elements of X and Y can be shown to correspond to the orbital tran-

sition coefficients for the single excitation of energy Ω. These are called the Casida
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equations,68 and they enable us to efficiently calculate excitation energies, occupan-

cies and oscillator strengths of excited states in TDDFT.

1.4.5 Algebraic Diagrammatic Construction

We aim to produce an excited state wavefunction of N electrons without using the

density as the state function, which defines DFT. To do so, we first calculate all of

the states resulting from the single excitations of a ground state wavefunction. Since

they are not, in general, orthonormal, we employ successive Gram-Schmidt orthog-

onalisations to build a satisfactory basis of intermediate states {
∣∣∣Ψ̃N

J

〉
}.69

We now build the so-called Algebraic Diagrammatic Construction (ADC) matrix:

MI J =
〈

Ψ̃N
I

∣∣∣ Ĥ − EN
0

∣∣∣Ψ̃N
J

〉
(1.59)

Where we have shifted the Hamiltonian by the ground state energy EN
0 . This

matrix yields the eigenvalue equation:

MX = XΩ (1.60)

Where Ω is the diagonal matrix of eigenvalue excitation energies Ωn and X has

values used to reconstruct the exact wavefunction from the basis of intermediate

states like so: ∣∣∣ΨN
n

〉
= ∑

J
XnJ

∣∣∣Ψ̃N
J

〉
(1.61)

To carry out this scheme, we need an accurate ground state wavefunction. A

common choice is the MP2 wavefunction, which yields the ADC2 excited state wave-

function.70,71

1.4.6 Excited State Coupled Cluster

CC methods can also be cast into an eigenvalue form for the excited states:72

AR = ΩR (1.62)
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Where the A matrix arises from linear response theory, much in the same spirit of

Casida TDDFT:

Aµiνj =
〈
µi
∣∣ e−T̂[Ĥ, τ̂µj ]

∣∣∣Ψ0
CC

〉
(1.63)

Where τ̂µj is the i-tuple excitation operator and µi the collection of orbitals in-

volved in this excitation.

In this paradigm, one can employ the full CCSD expression for the ground state,

and only use perturbative double excitations for the excited state. The resulting

scheme is called CC2 and scales with a power of N5 orbitals instead of the N6 of

CCSD.73

1.4.7 Multireference Methods (bis)

Finally, multireference methods can also naturally be applied to the excited state, as

can be understood from Section 1.1.9. CASSCF excited state calculations are usually

calculated in a state-averaged way, in order to take into account the different excited

states in the total density.

CASPT2 can apply its dynamic correlation correction to several state-averaged

CASSCF wavefunctions simultaneously.32 This is called Multistate CASPT2 or MS-

N-CASPT2 where N is the amount of excited states.74 It is a method of state-of-the-

art accuracy, for example predicting a vertical singlet excitation of 7.98 eV in ethene,

compared to the best estimate of 7.8 eV, where CC2 predicts 8.40 eV.75

Multireference methods are necessary to model highly nonadiabatic regions of

the PES, such as bond breaking or conical intersections, which are discussed in Sec-

tion 3.3.2. While ADC(2) and CC2 methods may be able to approximate the topol-

ogy of certain conical intersections,76 their pertinence is unpredictable, and CASSCF

or CASPT2 are the most robust tools available for this task. In particular, TDDFT,

a workhorse of excited state modelling, displays serious qualitative deficiencies in

this domain.77

Whilst the accounts of the accuracy of multireference methods for excited states

are extensive,78–80 their formidable cost limits their use. Indeed whilst most single

reference methods discussed herein scale their cost with power laws, multirefer-

ence methods scale factorially.81 This imposes significant restrictions to the system
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sizes and basis sets available to multireference methods. In particular, until recently,

CASPT2 energy gradients could only be computed numerically,82 making geometry

optimisation out of the capabilities of routine calculations on institutional clusters

for practically sized molecules.
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Chapter 2

Embedding Methods

2.1 Introduction

The electronic structure methods outlined in the previous chapter all succeed in

achieving increased accuracy with greater computational cost. In the case of chemi-

cal processes in condensed phases, the amount of electrons representing every actor

in the process becomes unmanageably large.

Fortunately, oftentimes, the process of interest is confined to a local area within

the material. We may therefore adopt the strategy of selecting a molecular sample

from the system, and performing calculations on this subsystem. Of course, the in-

teraction of the environment with the subsystem can be determining in the process

under study, and therefore often needs to be reflected in the computational simula-

tion.

2.2 Polarisable Continuum Models

The first approximation to the environmental interactions between a solvent or crys-

tal and a local site, is that of directly applying a model potential to the Hamiltonian

of the quantum description of that site. This is in contrast to later discussed meth-

ods which explicitly represent the environment of the area of interest. As such, in the

current case, the molecules under scrutiny are said to be placed in a continuum, and

the large family of implicit solvation models are also called continuum models.83

As a general rule, continuum models partition the simulation space between

a cavity, which contains a large portion of the electron density of the simulated
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molecule, and an infinite environment, meant to represent the medium. An effec-

tive method to reflect the electrostatic potential of the medium, is to reduce it to a

potential on the surface of the cavity. The potential within the cavity is related to the

surface charge σ(s) as follows:84

Vσ(r) =
∫

Γ

σ(s)
|r− s|ds (2.1)

Where we are integrating over the surface of the cavity Γ. The correct form of σ(s)

determines the quality of this kind of continuum model. If we presume that the inner

and outer regions of the cavity have different but isotropic dielectric permittivities,

we can derive a surface charge:85

σ(s) =
ε− 1
4πε

∂

∂n
(VM(s) + Vσ(s)) (2.2)

Where the ε is the medium’s dielectric constant, VM(σ) and Vσ(σ) are the elec-

trostatic potentials emanating from the inner region charge density and the surface

charge, and n is the unit vector normal to the surface at point s. The surface charge

is a function of its own potential, making Equation 2.2 require self-consistent calcu-

lations to solve.

This method is known as the Dielectric Polarisable Continuum Model (DPCM,

sometimes PCM). It has the advantage that it does not require additional explicit

molecular calculations to evaluate the solvation properties of the sample, and the

solvent is defined by a tunable dielectric constant. However it ignores non-electrostatic

interactions, which are key to the structure of dense condensed phases. Moreover,

it presumes an isotropy which, loses the ordered property of the Coulomb environ-

ment in crystal materials.

2.3 Point Charge Embedding

2.3.1 Non-isotropic Media

The electrostatic interactions between a molecular system and its environment can

indeed be highly directional. In molecules with an asymmetric polarity, the peri-

odic stacking of their crystal form means that one side of the molecule will be in
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closer contact with electronegative atoms than the other. Thus, instead of using a

continuum, it would be useful to locate the sources of electrostatic potential—the

environment atoms—in space.

Given a certain partial charge qi on an environment atom at position Ri, one can

use atom centred point charges to represent the total electrostatic potential of the

medium as such:

VES(r) = ∑
i

qi

|r− Ri|
(2.3)

If we embed the system’s Hamiltonian in the above potential, we can make its elec-

tron density respond to the environmental Coulomb potential.

Note that this scheme does not include any non-Coulombic forces, giving it a

very poor description of short range interatomic interactions. Furthermore, while in

the long range limit, the electrostatic potential from an atom does tend towards an

inverse law, it does not have the infinite growth at r = Ri which exists in Equation

2.3. It, instead, shows a finite cusp centred about the nucleus, called Kato’s cusp,

whose value depends on the charge of the nucleus.86,87

Thus, we must be aware that the accuracy of the electrostatic potential emanat-

ing from point charges deteriorates as the distance from the nucleus becomes small.

We call the error in electronic calculations caused by this discrepancy overpolarisa-

tion.88 In such cases, with the point charge potential being infinitely attractive, the

simulated charge density can be funnelled to the nuclear position. It is therefore im-

portant to choose a basis set which does not allow the wavefunction of the molecular

system to extend onto nuclear positions in the environment.

2.4 General QM:MM

2.4.1 Cluster Models

An alternate method for modelling a multiscale system is by explicitly modelling

the environment at a lower level of theory than the site of interest. This defines the

family of hybrid methods, which combine different quantum or classical methods

into one. At this point, it becomes important to concretise what would take the role
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: Region 1
: Region 2

FIGURE 2.1: Example of a cluster of benzene atoms taken from
their lattice positions. The pink molecule denotes the central

region.

of the central region and environment in the case of molecular crystals. Thankfully,

the non-covalent nature of these materials offers us an inherent partition.

If we care about a process localised on a few neighbouring molecules, then they

become the high level of theory region (region 1), and a surrounding cluster of

molecules taken from their crystal position becomes the low level of theory region

(region 2). This partition is represented on Figure 2.1 for the case of a cluster of ben-

zene molecules where the active site is one unit. The size and shape of this cluster

is a topic of discussion, but the smallest useful one would include all of the nearest

neighbours to the region 1 molecules, ensuring an isotropic coverage of the short

range interactions.

As a side note, if we wanted to partition the cluster through a covalent bond, we

would terminate the dangling bonds of region 1 and potentially 2 with appropri-

ate fictitious monovalent atoms. This explains why in certain scenarios, region 1 is

referred to as model system, in the literature. We forego this convention, since this

discussion is centred around system-environment boundaries which do not cleave

bonds.
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2.4.2 Intermolecular Interactions

Our main goal now consists in modelling the energy of region 1∪ 2. We can write:

Ehigh:low(1∪ 2) = Ehigh(1) + Elow(2) + Eint
high:low(1, 2) (2.4)

Where El(n) is the energy of the isolated region n, at the level of theory l, and

Eint
high:low(1, 2) is the interaction energy between the two regions. The first developed

hybrid methods, and still the most popular today, were those combining quantum

mechanics methods with molecular mechanics methods (QM:MM). We can rewrite

Equation 2.4 with QM:MM indices:89

EQM:MM(1∪ 2) = EQM(1) + EMM(2) + Eint
QM:MM(1, 2) (2.5)

The crux of QM:MM techniques relies in finding an appropriate expression for Eint
QM:MM(1, 2).

The family of methods which focus on calculating the first two terms of Equation 2.5

with electronic structure and molecular mechanics packages, and then computing

the interaction term explicitly are called additive QM:MM.

2.5 IMOMM

A parallel family of methods uses a different formulation, instead choosing to im-

plicitly consider the interaction term via a subtraction. First, we consider the com-

ponents of the energy of the whole system in at the MM level of theory:

EMM(1∪ 2) = EMM(1) + EMM(2) + Eint
MM(1, 2) (2.6)

We can reorder this as EMM(2) + Eint
MM(1, 2) = EMM(1 ∪ 2) − EMM(1), and in-

sert it in Equation 2.5, provided that we only require an MM level description of

the interaction energy. The full Integrated Molecular Orbital Molecular Mechanics

(IMOMM), energy is finally written:90

EONIOM
QM:MM(1∪ 2) = EQM(1) + EMM(1∪ 2)− EMM(1) (2.7)
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The meaning of the term “ONIOM”, is explained later. The energy gradients can

naturally be calculated in the same way. For instance the force on region 1 atoms is

the negative of the following:

dEONIOM
QM:MM(1∪ 2)

d1
=

dEQM(1)
d1

+
dEMM(1∪ 2)

d1
− dEMM(1)

d1
(2.8)

Let us carefully compare Equations 2.5 and 2.7. In the former, only one MM

calculation is carried out, as opposed to two in the latter, including one necessarily

larger one (1 ∪ 2). In our case, this is not a significant issue, since we will wish to

push the accuracy of the QM level of theory, making it, and not any MM calculations,

the computational bottleneck of the method.

We have also gotten rid of any explicit calculation of the interaction term. This

is a promising feature, since the components of the intermolecular interaction are

difficult to express and disentangle, however we are now left with the inter-region

interactions reflected only by their MM description.

2.6 QM:MM Electrostatic Embedding

One significant issue of the MM description of inter-region interactions is that they

do not capture any electronic response from the region 1 atoms to the environment

at a quantum level of theory. This is a particularly severe shortcoming for electro-

static interactions, which are far-reaching by nature, and can determine the elec-

tronic structure of the investigated ground or excited states.

To overcome this difficulty, the inter-region electrostatic energy in the second

term of Equation 2.7 must be removed—this is a known quantity in MM calcula-

tions—and injected in the first term. This method is called electrostatic embedding,

and hybrid methods without it are said to use mechanical embedding. The most com-

mon electrostatic embedding method complements the QM Hamiltonian of region 1

with point charges at the location of region 2 atoms, with charge values determined

by the forcefield. This allows the electron density of region 1 to respond to the elec-

trostatic potential of the environment, as is discussed in Section 2.3.
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2.7 ONIOM QM:QM’

If we want to increase the level of accuracy of the inter-region interactions, while still

using a subtractive scheme, we must use a better low level of theory than MM. The

Integrated Molecular Orbital Molecular Orbital (IMOMO) method, does just this,

yielding an energy equation of the form:9

EONIOM
QM:QM′(1∪ 2) = EQM(1) + EQM′(1∪ 2)− EQM′(1) (2.9)

Where QM’ is a quantum level of theory lower in accuracy than QM. At this point, it

is worth mentioning that these hybrid method schemes can be extended to include as

many regions and methods as necessary. The general term for subtractive schemes,

regardless of number of layers and type of modelling method, is our own n-layered

integrated molecular orbital and molecular mechanics (ONIOM).10 ONIOM is a superset

of IMOMM and IMOMO, and we therefore employ it in our energy expressions since

specifying the levels of theory involved renders the distinction between IMOMM or

IMOMO superfluous.

If we want to keep using electrostatic embedding for IMOMO, the implementa-

tion is more delicate than for IMOMM. Here, the inter-region Coulomb interaction

is not a known quantity which could be removed from the second term of Equation

2.9. Instead, we must embed the third term in point charges, thus cancelling out the

electrostatic interaction present in the second. A discussion of the choice of point

charge can be found in Chapter 4.

2.8 Shortcomings of ONIOM Embedding Methods

This section serves as a motivation for the rest of the work presented in this thesis.

As such, some of the problems of ONIOM methods are briefly discussed now, and

are addressed in Chapter 4.

2.8.1 Inclusion of Long-Range Effects

In ONIOM schemes, region 1 is subject to the environmental interaction of region 2.

A region 2 containing only the nearest neighbour molecules should suffice to cover
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the non-electrostatic effect, owing to their short-range nature.91 However electro-

static effects decay as an inverse law, and therefore can have a significant impact on

the electronic state of region 1.

It is unclear how many layers of molecules in region 2 would suffice to repre-

sent the screened electrostatic potential in an amorphous material, but the larger the

region, the higher the cost to model computationally. Moreover, as discussed in Sec-

tion 1.3.6, in a crystal, the accuracy of the potential does not systematically improve

with a larger region, making traditional ONIOM a poor choice if long-range effects

have a role in the system under study.

2.8.2 Point Charge Representation

The use of point charge embedding to represent electrostatic effects presumes a sim-

ilarity between the Coulomb potential of a point charge and that of an atomic charge

density. We have already discussed a discrepancy in the short-range in Section 2.3,

but how can we ensure that the point charge values which we employ for each atom

will have the correct behaviour in the mid-to-long-range?

Indeed, there is no absolute definition of an atom’s partial charge, and the vari-

ety of population analysis schemes available to use suggests that some will be more

appropriate than others in representing the electrostatic potential of the atom for the

embedding of region 1 at high and low levels of theory. A successful scheme, com-

bined with valid electronic structure methods, would reproduce accurate absorption

and emission energies of molecules in their crystal environment, whilst fulfilling an

appropriate cancellation of errors in the ONIOM equation.

A commonly used method for both is that of the Mulliken analysis,92 which es-

sentially accounts for the contribution of individual atomic orbitals to the overall

electron density, and then sums up this contribution between all the orbitals belong-

ing to one atom.93

Some known problems are the fact that the electron population being shared

between two orbitals of different atoms will necessarily be split in half, not account-

ing for the potential discrepancy between the electron affinity of the nuclei. Fur-

thermore, due to being directly defined by the basis set of the calculation, Mulliken



2.8. Shortcomings of ONIOM Embedding Methods 71

charges are highly basis set dependent. For instance the charge values on a water

molecule can vary up to 0.7 e− depending on the basis set.94

It is therefore unclear whether the most commonly used partial charge scheme is

appropriate for electrostatic embedding. We ought to seek out alternatives, and com-

pare the effect of their embedding on the electronic structure of region 1 molecules.

2.8.3 Mutual Polarisation

The electrostatic embedding methods described above allow for the representation

of the static Coulomb interaction of the crystal on the active site. This one-way rela-

tion is not an accurate representation of the real scenario where the regions 1 and 2

mutually polarise each other until they find an equilibrium at fixed nuclear coordi-

nates, following the BO approximation.

Mutual polarisation plays an important role in certain excited state processes.

For instance, the charge transfer states in LiF interacting with a Be atom were probed

with different kinds of QM:MM implementations; and the non-polarisable one over-

estimated excited state energies by over 0.1 eV.95. It is as of yet unclear how im-

portant these errors become in molecular crystals, and which methods should be

employed to mitigate them.

2.8.4 Implementation

Finally, QM:QM’ techniques face many issues in terms of their software implementa-

tion. On a technical level, the electronic structure programs which offer this feature

are few and far between. Furthermore, each of those programs only implements a

limited set of electronic structure methods, thus limiting the amount of QM and QM’

method combinations available to the user. When modelling excited states, having

as much flexibility as possible in the choice of method is crucial, due to the variety

in character of many body excited state wavefunctions.

On a practical level, the task of selecting a region 1 and 2 combination, and as-

signing point charges to pertinent lattice positions is laborious, and difficult to in-

corporate in a reproducible workflow. For instance, nearest neighbour molecules is a

term with no formal definition, and while they can often be recognised at a glance,
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edge cases are certainly subjective to the researcher. An algorithmic method for the

practical steps of setting up these calculations is therefore desirable.
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Chapter 3

Photochemistry

With the arsenal of methods discussed in Chapters 1 and 2, we are in a position to

model some photochemical systems in the excited state. This chapter outlines the

theory behind photochemistry in the vacuum and aggregate phases so that we can

better understand the phenomena we are trying to model.

3.1 Absorption

3.1.1 Principles of Photochemistry

Light-induced chemical processes follow two fundamental laws:96

• Grotthuss–Draper Law: Only light which is absorbed by the chemical system

can produce change.

• Stark–Einstein Law: The energy of each absorbed photon corresponds to the

energy difference between the initial and newly excited states of the system.

The combination of these laws implies that in order for a photochemical process to

occur, the incident photons to the chromophore need to be of an energy matching

an allowed electronic transition. This gain in energy takes the wavefunction from its

original ground state to a new, excited state one.

In the BO approximation, the energy of the molecular wavefunction depends

parametrically on the nuclear coordinates. This implies that for a given electronic

excitation state, there is a continuous hyperdimensional landscape which maps a set

of nuclear coordinates to a potential energy. Such Potential Energy Surfaces (PESs)

are represented in Figure 3.1, displaying different excited state mechanisms (see later

subsections).
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FIGURE 3.1: Example of a potential energy surface demonstrat-
ing either a radiative decay via fluorescence, or a nonradiative

decay via funnelling through a conical intersection.
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FIGURE 3.2: Absorption spectrum of (2-
hydroxyphenyl)propenone (HPP) in single crystal form.97

First, bringing our attention to the absorption process, we can see how the dif-

ference in energy between two potential energy surfaces at a fixed ground state ge-

ometry would correspond to the energy of one photon. Even considering all of the

possible excitations present in the full CI expansion of Equation 1.19, electronically

excited states only occupy discrete levels of energy, in this limited picture. In reality,

molecular and crystalline systems absorb as continuous spectra across the electro-

magnetic range, as shown in Figure 3.2 for the 2-hydroxyphenyl)propenone single

crystal. This material holds promise for solid state luminescent applications such as

lasers or OLEDs.97
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Several effects contribute to the broadening and mixing of the excitation energies,

shaping this absorption spectrum.

3.1.2 Oscillator Strength

First, we will investigate what the probability is of photons being absorbed for a

given transition.

To answer this, we begin by examining the transition dipole moment (TDM) be-

tween an initial state i and final state j:

(Tij)x =
∫

ψ∗j (r)x̂ψi(r)dr (3.1)

Where ψn(r) is the wavefunction of state n. This equation gives the x component

of the total vector TDM, Tij. The probability of transition from one quantum state

to another is worked out from the quantum eleoctrodynamical treatment of sponta-

neous emission. It is proportional to the square of the TDM, and to the energy gap

between the states:98

fij ∝ (Ej − Ei)
∣∣∣Tij

∣∣∣2 (3.2)

Where En is the energy of state n, and fij is called the oscillator strength of the transi-

tion i → j. The oscillator strength can therefore serve as a measure of the likelihood

of population of different excited states, depending on the frequency of the incident

light.

3.1.3 Natural Linewidth

For a given molecule, we therefore have several energy levels at which photons

can be absorbed, with different probabilities. Additionally, we should consider the

energy-time form of the uncertainty principle:

∆E∆t ≥ h̄
2

(3.3)

Which imposes a minimum on the product between the uncertainty in the excited

state energy ∆E and the uncertainty in its lifetime ∆t. There is therefore a so called
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FIGURE 3.3: Diagram showing the manifold of transitions be-
tween two electronic states, each with four vibrational sub-
states. The electronic wavefunctions are denoted ψn and the

vibrational states νm.

natural linewidth which ensures that incident photons do not need to match the en-

ergy difference between states at infinite precision.

3.1.4 Role of Vibrations

Note that the wavefunctions in Equation 3.1 have both an electronic an a nuclear

part. Working under the BO approximation, these parts can be factorised, and the

transition dipole moment ends up accounting for both the change in dipole from

the transition of the electron cloud, and the overlap between the nuclear vibrational

states. Labelling the different potential states involved in a transition as ψn,νm , for

the mth electronic excitation and Mth vibrational substate, we end up with a large

amount of possible combinations, depicted schematically in Figure 3.3.

Moreover, for periodic materials, we consider lattice vibrations rather than molec-

ular ones, and bands of energy rather than discrete levels. This further contributes

to the continuity of the spectrum in Figure 3.2
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3.2 Emission

We now return to Figure 3.1 to understand what can happen to the molecule after

excitation. If the molecular system is at rest at the time of absorption, its nuclear

coordinates will be at the point of lowest energy, the ground state geometry. The

corresponding excited state at the same geometry is reached after absorption, and

is referred to as the Frank-Condon point (FC). Since the FC geometry is unlikely to

be a minimum of the excited state potential energy surface, the molecule will have

enough energy to travel downhill (or through tunnelling, or extra vibrational en-

ergy) to new nuclear configurations.

3.2.1 Fluorescence

When the excited state reaches a minimum geometry, the molecule naturally oscil-

lates around this minimum. However excited states are by definition metastable,

and therefore the energy difference between ground and excited state must be re-

leased in some way. Such transitions from states of same multiplicity are called

fluorescence. When a molecule fluoresces, it emits a photon of the frequency corre-

sponding to the difference in energy between excited and ground state.

The lifetime of this process is dependent on the overlap of the wavefunctions

of initial and final state (see Section 3.1.2) and the relative populations of the two

states within the chemical system. The result is usually lifetimes of the order of

nanoseconds.

3.2.2 Phosphorescence

In certain cases, as a part of the excited state mechanism, the wavefunction may en-

ter a state of different multiplicity than the ground state. In this case, after reaching

the excited state minimum, the transition between states is classically forbidden due

to the spin flip involved. The process may still occur, but the lifetime of phosphores-

cence can reach minutes or hours.
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3.3 Nonradiative Decay

Electronic wavefunctions can also decay from the excited to the ground state nonra-

diatively. Understanding how to limit this behaviour is essential in designing effi-

cient luminescent materials.

3.3.1 Vibrational Internal Conversion

Fermi’s Golden Rule (FGR) gives an expression for the rate of transfer between

quantum states under small perturbations.99 The nonradiative transition between

separate excited state of the same spin multiplicity in the adiabatic regime is called

internal conversion. Derived from perturbation theory on the TDSE, FGR states:

kFermi
IC =

2π

h̄ ∑
νi ,ν f

Piνi(T)

∣∣∣∣∣∑k

〈
Ψ f ,ν f

∣∣∣ P̂k
∣∣Ψi,νi

〉∣∣∣∣∣
2

δ(Eiνi − E f ν f ) (3.4)

Where Piνi(T) is the Boltzmann distribution at temperature T of the vibrational

manifold at the initial electronic state, Ψn,νn is the wavefunction at electronically ex-

cited state n and vibrational state νn, and P̂k are the nuclear momentum operators

for the k-th normal mode of vibration.

In the BO approximation, we can separate the wavefunction
∣∣Ψiνi

〉
=
∣∣ΦiΘiνi

〉
into a product

∣∣Ψiνi

〉
= |Φi〉

∣∣Θiνi

〉
, where Φi is the electronic wavefunction and Θiνi

is the vibrational wavefunction.

This allows us to rearrange the internal conversion rate as follows:100,101

kFermi
IC =

2π

h̄ ∑
νi ,ν f

Piνi(T)

∣∣∣∣∣∑k

〈
Φ f

∣∣∣ P̂k |Φi〉
〈

Θ f ν f

∣∣∣ P̂k
∣∣Θiνi

〉∣∣∣∣∣
2

δ(Eiνi − E f ν f ) (3.5)

All else being fixed, this allows us to express the rate of internal conversion in

terms of the overlap between vibrational wavefunctions, which can be rationalised

as the energy barrier between PESs being overcome by thermal vibrations.

Under FGR, the transition occurs between degenerate vibrational states rather

than necessarily degenerate electronic ones. Because of this, the numerical methods

for solving Equation 3.5 use approximations for the nuclear motion of the molecule,
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such as a harmonic potential. This potentially leaves out points of degeneracy far

from excited state minima.

3.3.2 Conical Intersections

In certain scenarios, however, the excited and ground electronic potential energy

surfaces are prone to meeting, as is shown in the rightmost phenomenon of Figure

3.1. In this case, the time-dependent SE has two degenerate solutions. Additionally,

the coupling between excited and ground states also has critical points, where the

adiabatic separation between them breaks down. The points which combine these

two conditions allow for the funnelling of the wavefunction from the excited to the

ground state without emission at any point.

We can inspect these exceptional cases by enclosing the TISE in wavefunctions

in the Born-Huang representation:

|Ψ〉 =
∞

∑
i
|Φi〉 |Θi〉 (3.6)

Where we have separated the electronic wavefunction Φ from the nuclear one Θ and

labeled the excited state i.

The result is that sufficient condition for this particular degeneracy to occur be-

tween states i and j, is the following:

vij =
〈Φi| ∂Ĥel

∂R

∣∣∣Φj

〉
Ej − Ei

→ ∞ (3.7)

gij =
∂

∂R

(
〈Φi| Ĥel |Φi〉 −

〈
Φj

∣∣∣ Ĥel
∣∣∣Φj

〉)
= 0 (3.8)

Where Φn is the electronic wavefunction of state n, Ĥel is the electronic Hamilto-

nian, En is the energy of state n, and R are the nuclear coordinates. vij is called the

nonadiabatic coupling vector and gij is the derivative coupling vector.102

The intersections are conical because they are determined by two coordinates in

hyperspace. They should be understood as a multidimensional seam in the potential

energy surfaces.103 This leads us to consider the point of lowest energy along that

seam with special interest. The Minimal Energy Conical Intersection (MECI), is an



80 Chapter 3. Photochemistry

important geometry to characterise, since energy relative to that of the FC geometry

dictates its accessibility, and thus the availability of a nonradiative decay channel.

We should clarify the distinction between this decay and the internal conversion

through thermal vibrations. The former involves a seam of electronically degenerate

states, attainable through thermal motion. The latter directly has to do with the

overlap of vibrational wavefunctions, and provides a probability of transition. Both

decays can be attained through vibrations, though they are distinct processes which

can collaborate or not. Conical intersection decay is the dominant one in the strongly

nonadiabatic regions of the PES and vice versa elsewhere.104

3.4 Excited States in Aggregates

3.4.1 Excitons

In molecular aggregates, it is possible for the excited state process to delocalise over

several molecules. A collection of thus correlated excited states is called an exci-

ton, when speaking at the molecular scale. As a semantic aside, when considering a

lattice, excitons usually refer to an electron-hole pair; however, for small groups of

molecules, this charge separation is usually much less distinct, and we call exciton

what a spectroscopist might call an "exciplex". Our convention is in line with the lan-

guage used in the field of molecular photochemistry at the aggregate scale.91,105,106

For clarity of explanation, we will consider the case of two molecules, but know

that much of what is discussed is generalisable to the trimer, tetramer, and so on.

Two neighbouring molecules are said to be excitonically coupled if their excited

states in isolation are different to those as a dimer. We can quantify this exciton

coupling by writing the Hamiltonian of the molecular system in the diabatic basis:

HD =

ED
1 J

J ED
2

 (3.9)

where ED
n is the diabatic energy of state n and J is the exciton coupling.
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3.4.2 Kasha’s Model

Obtaining the above Hamiltonian matrix is not a trivial effort, therefore a common

approximation is employed to characterise the excitonic states is to reduce each

molecule to a point dipole and investigate their electrostatic interaction upon tran-

sition. In this case, the relative arrangement of the point dipoles determines the

exciton coupling. The expression for the exciton coupling between two molecules i

and j can be derived by the Coulomb energy of two point dipoles. It is, in atomic

units:107

Jij =
1
r3

ij

(
µi · µj − 3

(µi · ri j)(·ri j · µj)

|rij|2

)
(3.10)

Where µi and µj are the transition dipole moments for each molecule and rij is the

distance between their centroids. This approximation, known as Kasha’s exciton

model, is used to rationalise the blue or red shifting of the excitation of molecules in

aggregate due to collective excitation.

The exciton coupling causes a splitting of the multi-molecular excited state, thereby

selecting the ordering between the symmetric and antisymmetric combination, and

the allowed same-symmetry radiative decay transition.6 Dimers with a negative

coupling have the
|i〉+|j〉√

2
wavefunction lower in energy than the

|i〉−|j〉√
2

wavefunc-

tion, and are denoted J aggregates. The opposite is the case for H aggregates.

Due to the dot products in Equation 3.10, the sign of Jij, and therefore the classifi-

cation of the dimer, solely hinges upon the angle between transition dipole moments,

and the vector between the monomer’s centroids. The transition occurs at an angle

of 54.7°.

Following Kasha’s rule, decay to the ground state overwhelmingly happens from

the lowest energy excited state. Therefore, for H aggregates, radiative decay is

quenched and blue shifted, while for J aggregates, it is red shifted.

3.4.3 Types of Exciton

Of course, in reality, the electron density of the two monomers does not behave like a

static point dipole. Beyond the missing short-range interactions and the higher reso-

lution of the Coulomb potential, one should also take into account the reorganisation

of the density inter- and intramolecularly.91
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FIGURE 3.4: Visual representation of the three extreme types of
excitons.

Indeed three extreme scenarios are possible, represented on Figure 3.4. Upon

excitation, the electron density of each molecule can reorganise within and between

them. The exciton is then said to be delocalised. In a different case, the reorgani-

sation could be confined to only one molecule, making the exciton localised, occa-

sionally called a Frenkel exciton. Finally, the electron density can migrate from one

molecule to another, producing a charge transfer (CT) state.108

CT states are of much relevance to photovoltaic applications due to their role in

electron transport within a material. They also have a role in nonradiative decay

mechanisms, where an excitation can split into a CT state and therefore dissipate the

photon energy by releasing the electron-hole pair at the surfaces of the material.

3.5 Quantum Yield of Fluorescence

The net effect of fluorescent radiative and nonradiative mechanisms, is a ratio of

emitted photons to absorbed photons. This is a measurable quantity, called the quan-

tum efficiency of fluorescence (QEF), which is usually the principal result reported from

experiments on luminescent materials:

Φf =
kr

kr + knr
(3.11)
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Where kr is the radiative decay rate, related to the oscillator strength, and knr is the

non-radiative decay rate, principally related to the accessibility of conical intersec-

tions, the exciton hopping rate, and the coupling between vibrational states. Addi-

tional mechanisms such as intersystem crossing are possible, but not relevant to this

work.

An accurate modelling of the excited state potentially energy landscape of a

molecule informs us of the oscillator strength of the potential transitions, their en-

ergy gaps, and the relative energy of the MECI. Examining the vibrational phase

space of the molecules and the electronic structure of the excited state aggregates

completes the picture of the nonradiative part of the QEF.

Of course the challenge is modelling all of these within the crystal environment

of the excited state process.

3.6 Example of Application: Four-Level Lasers

To further motivate the importance of accurately modelling photochemistry in crys-

tals, this section briefly explains the mechanism behind a four-level laser, and how

it relates to the concepts presented in this chapter.

The full mechanism is represented in Figure 3.5. In a solid state organic molec-

ular crystal laser, the medium can be pumped by an incident photon, taking it to

its FC state from the ground state (GS). The excited molecule(s) then reorganise to

a minimum geometry S∗1 nonradiatively (where the asterisk indicates the excited

state), from which they undergo fluorescent decay to S1 (still the same geometry but

now in the ground state. Finally, the system relaxes back to the GS geometry though

thermal vibration.

The four-level structure is motivated by the expression for the Maxwell-Blotzmann

thermodynamic equilibrium between two states:

n2

n1
= e−

E2−E1
kT (3.12)

Where k is the Boltzmann constant, Ei is the energy of state i, and T is the tempera-

ture. The left-hand side of Equation 3.12 is vanishingly small, indicating that at an

equilibrium, n1 � n2. To encourage emission, we should invert this ratio, and take
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FIGURE 3.5: Diagram of the mechanism behind a four-level
laser. Each step in the photocycle is labelled with its usual
notation—Ground State (GS), Frank-Condon (FC), excited state

minimum (S∗1) and the corresponding ground state (S1).

the system out of equilibrium. In our four-level laser example, the 1 state, labelled

S1, is very depopulated compared to S∗1 due to the efficient vibrational decay which

takes the ground state molecule from its S1 geometry to FC. Thus we have nS∗1 � nS1 ,

enabling population inversion.

Additionally, the efficiency of the laser depends on the QEF of the lasing tran-

sition. A large Stokes shift is also desirable, to minimise reabsorption, therefore

requiring a substantial reorganisation between the FC and S∗1 geometries. Further-

more, if the lasing transition is only accessible through S0–S1 absorption, then the

S1–S2 energy gap should be large enough to discourage absorption to S2 and higher

states.

Such specific properties make organic single crystals ideal candidates for laser

media. The conformational variety of their crystal packing makes their intermolec-

ular properties tunable, which can principle be exploited to tailor optimal materials.

Reference 6, reviews a large list of different organic single crystals which desirable

emissive properties spanning across the visible spectrum.
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Part II

Results
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Chapter 4

Ewald Embedded Cluster

This chapter is adapted from the published version of Reference 61.

🔍

🔬

🔭

4.1 Introduction

Excitations in organic molecular crystals have been found to localise on only a few

constituent monomers of the crystal.105 This poses a challenge for traditional elec-

tronic structure methods, which have been designed to describe either highly lo-

calised or periodic delocalised electronic states. In this context, embedding tech-

niques, such as those discussed in Chapter 2, represent a viable option by combining

higher quantum mechanical levels of theory to describe the excited region (QM) and

more approximate methods for the crystal environment (QM’ or MM).109

Within the ONIOM scheme, the QM’ method can be chosen to be plane-wave

DFT11,12 for a natural description of the lattice periodicity, although this usually

means sacrificing the electrostatic embedding. Correlated wavefunction-in-DFT pe-

riodic embedding approaches are a promising alternative110–112. One of the most

common approaches is to use cluster models to describe the periodic crystal.13–15

The cluster is extracted from the atomic lattice positions and provides an energetic

description of the short-range interactions with the QM region.
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In the case of ionic or highly polar crystals, long-range interactions can be of great

importance since the electrostatic potential is slowly and conditionally convergent.

This prompts the use of the Ewald summation, to evaluate long-range Coulomb

interactions in the crystal (see Section 1.3.6).

When considering embedded finite cluster models, the electrostatic embedding

can be modified to reflect the Ewald potential. In this case, the electrostatic inter-

actions affecting the QM region extend beyond just the short-range and up to the

infinitely large in a periodic system. Klintenberg et al. developed a methodology

where a large array of point charges is fitted to reproduce the exact Ewald potential

inside the QM region of a cluster model.63,113,114 This procedure has been used for

the investigation of ionic crystals and the calculation of NMR parameters in organic

crystals.63,115,116 Sokol et al. have implemented a related method in Chemshell to

model defects in ionic materials.117,118 An alternative is the procedure proposed by

Abrenkov and Sushko, where compensating point charges are added within unit

cells to approach the Ewald potential.119,120

Ewald embedding methods have been used with QM:MM and ONIOM approaches

allowing the evaluation of the short-range non-Coulombic interactions.121–126 How-

ever a simpler variant is the Point Charge Embedding approach (PCE) where only

the Coulomb interactions are considered, using point charges, and non-electrostatic

interactions are neglected.63,109 The performance of these methods for the investiga-

tion of excited states PESs of molecular crystals is relatively unexplored. Recently,

Ciofini and co-workers16,17,127 have implemented an Ewald PCE scheme based on

the method proposed by Derenzo et al..114 In order to consider mutual polarisation

effects of the crystal environment, a self-consistent algorithm was employed in the

investigation of a crystal displaying aggregation-induced emission.16 Self-consistent

schemes are typical tools used in QM:MM schemes when the polarisation of the en-

vironment is important.128–130

In this chapter, we present different Ewald embedding approaches for the de-

scription of PESs of molecular crystals, with specific focus on the treatment of excited

state minima and conical intersections. We show that due to the lack of short-range

non-Coulombic interactions, geometry optimisation with the PCE method can be

extremely problematic. As a solution, we implement an Ewald-embedded QM:QM’
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FIGURE 4.1: Molecular diagram of the 2’-hydroxychalcone
derivatives, HC1 and HC2. The access to conical intersections
for theses molecules is centred around the rotation of the blue
group about the dihedral angle shown in bold. The notable

atoms with large partial charge are labelled in pink.

cluster model that can be used to explore the PES of flexible molecules. We assess

the efficacy of these schemes with two crystals based on 2’-hydroxychalcone (HC1

and HC2, shown in Figure 4.1). These molecules undergo excited state intramolec-

ular proton transfer (ESIPT), where the large changes in electronic structure in the

excited state pose a challenge to embedding methods. The figure represents the enol

(E) form. The keto form (K), where the proton is bonded to the other oxygen atom,

is unstable in the ground state.

Our group has previously investigated HC1 and HC2 in the context of Solid

State Luminescent Enhancement (SSLE).131,132 We opt for the term SSLE over Ag-

gregation Induced Emission (AIE), which is more popular in the field, because it is

more specific, as outlined in Reference 133. The population of the keto (K*) and

enol (E*) excited states depends on the identity of the substituents and crystal pack-

ing.132 HC1 displays emission in the crystal with promising properties to be used in

solid state lasers134 and predominantly forms herringbone-type aggregates. In con-

trast, HC2’s decay is mainly non-radiative and its crystal structure features mainly

π-stack dimers. Their excited state PESs were found to be particularly sensitive to

the electrostatic environment. The SLE character of HC1 can be understood using

the Restricted Access to Conical Intersections (RACI) model135,136 wherein upon ag-

gregation the energy of the S1-S0 conical intersections increases, thereby blocking

nonradiative deactivation pathways and enhancing the emissive response.

The chapter is organised as followed. First, we present the different embedding

models and the details of their implementation. Next, we define how to choose the
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size of the high-level QM region, an important step in the division of the cluster re-

gions. We then determine the effect of different point charge embedding schemes

and assess their overall performance. In our conclusions, we suggest a protocol for

researchers studying excited states in molecular crystals. The presented method-

ologies are implemented in a new open-source platform: fromage (FRamewOrk for

Molecular AGgregate Excitations).

4.2 Embedding Schemes

4.2.1 Point Charge Embedding

We consider two electrostatic Ewald embedding approaches to investigate excited

states in molecular crystals: PCE and a two-level ONIOM(QM:QM’) model. For the

PCE approach, where only the Coulombic interactions are considered, we adopt a

strategy similar to that proposed by Wilbraham et al.17. The atomic charges were ob-

tained using the Ewald program from Derenzo et al.114 after being modified to allow

non-integer charge values. The origin of the charges is discussed in Section 4.2.3.

The effect of the polarisation of the environment was considered for both methods

within a self-consistent embedding algorithm. These approaches were implemented

in fromage, the source code and the documentation are available online.137,138

In the Ewald program,114 an array of about 104 charges is generated from a su-

percell. Three zones are defined, the central region (zone I) is where the highest level

of theory will be used. It is spherically surrounded by a buffer region (zone II) of

approximately 500 point charges. Charges of both zone I and II are held constant.

The rest of the charges (zone III) are altered to reproduce the Ewald potential in the

central and buffer regions upon the direct summation of all point charges. The algo-

rithm removes any artificial dipole moment introduced in the procedure. A detailed

description of the method and the corresponding program can be found in Reference

114.

The implementation of PCE in fromage consists of electronic structure calcula-

tions at zone I atomic sites, embedded in the atomic charges of zones II and III.

For clarity, we refer to zone II and III charges as Ewald charges. Excited state

energies are obtained with TDDFT, CASSCF, CASPT2 and CC2 via interfaces with
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Gaussian,139 Molcas,140 and Turbomole141. An interface with DFTB+142 is under de-

velopment. The atomic charges can be obtained from molecular or periodic crystal

calculations. We consider RESP, Mulliken and NBO from molecular calculations and

RESP, Mulliken, Hirshfeld and AIM charges from periodic calculations. Currently,

atomic charges can be read from Gaussian and CP2K.

fromage provides tools for the exploration of PESs of molecular crystals. The L-

BFGS minimisation algorithm is used to locate stationary points. A complete char-

acterisation of excited state potential energy surfaces in molecular crystals require

the description of conical intersections. We have implemented the penalty function

method of Levine et al.143 to optimise Minimal Energy Conical Intersection (MECI)

geometries. In contrast with other methods,144 this approach does not require nona-

diabatic coupling vectors. A function of the averaged S1 and S0 energies (Ē1−0) and

the S1–S0 energy gap (∆E) is minimised:

F = Ē1−0 + σ
∆E2

|∆E|+ α
(4.1)

where σ is a Lagrangian multiplier and α is a parameter such that α � |∆E|. The

purpose of this functional form is to find a smooth minimum for the S1–S0 energy

difference, with a weight σ, whilst minimising the overall energy with a weight 1/σ.

This algorithm is implemented in fromage for CASSCF, CC2 and TDDFT elec-

tronic methods. We would like to emphasise that even when multireference quan-

tum methods are preferable for modelling S1–S0 crossings,77,145 in many cases single-

reference methods can provide a qualitative description of these regions of the PES.

Conical intersections can approximatively be described with single-reference meth-

ods such as TDDFT.145 Nonadiabatic dynamics simulations with these methods have

shown for multiple systems that methods such as ADC(2) and CC2 can provide rea-

sonable results.76,146 In the case of TDDFT, a careful selection of the functional is

required.147,148 Considering the computational cost of multireference methods and

the sensitivity of their active space, it can at times be necessary to resort to single-

reference methods. However, their performance near S1–S0 crossings should be care-

fully tested by comparison with multireference calculations.
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4.2.2 Ewald Embedded ONIOM QM:QM’

Geometry optimisation and conical intersection search become problematic within

the PCE scheme because of the lack of short-range non-Coulombic interactions which

results in overpolarisation effects (see section 4.4.2). To overcome these limitations,

we formulate an ONIOM149 Ewald Embedded Cluster (OEEC) model. It is devised

as an extension of the commonly used ONIOM Embedded Cluster model (OEC)

which usually only includes electrostatic embedding up to the range of the cluster.

We consider a QM:QM’ scheme rather than QM:MM to avoid the need for specific

parameterisation.

We wish to expand upon the electrostatically embedded expression for the ONIOM

QM:QM’ energy discussed in Chapter 2 by including long-range electrostatic effects.

To do so, we begin by deriving the ONIOM equation. To define a total energy ex-

pression, we state the energy of the whole crystal divided into regions 1, 2 and 3,

where 3 surrounds 2 which surrounds 1. Regions 2 and 3 will be fixed in place

whereas region 1 is allowed to reorganise. We denote inter-region interactions as

Eint(i ∪ j) which can be split between electrostatic (EES(i ∪ j)) and other (EX(i ∪ j))

interactions.

E(1∪ 2∪ 3) =E(1) + E(2) + E(3) + Eint(1∪ 2) + Eint(1∪ 3) + Eint(2∪ 3) + Eint(1∪ 2∪ 3)

=E(1) + E(2) + Eint(1∪ 2) + Eint(1∪ 3) + Eint(1∪ 2∪ 3) + const.

=E(1) + E(2) + EES(1∪ 2) + EX(1∪ 2) + EES(1∪ 3) + EX(1∪ 3) + Eint(1∪ 2∪ 3)

+ const.

(4.2)

We can neglect the EX(1 ∪ 3) term since Coulombic interactions dominate the

long range regime. The nonadditive three-body term Eint(1∪ 2∪ 3) is also neglected

in this picture, as the freezing of 2 and 3 should drive it down significantly, and

we wish to avoid modelling infinitely many molecules. By further removing the

constant, and assigning different levels of theory to the various terms, we obtain an

expression for the hybrid QM:QM’ energy:
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ẼOEEC
QM:QM′(1∪ 2) =

[
EQM(1) + EES

QM(1∪ 2) + EES
QM(1∪ 3)

]
+
[

EQM′(2) + EX
QM′(1∪ 2)

]
(4.3)

Here, the first bracket can be approximated via a QM level calculation of the

region 1 energy, electrostatic embedded with whichever point charges will best rep-

resent the electrostatic interactions between 1 and 2∪ 3. We use the notation:

EQM(1) + EES
QM(1∪ 2) + EES

QM(1∪ 3) ≈ EEw
QM(1) (4.4)

For the second bracket, we can use a similar strategy:

EQM′(2) + EX
QM′(1∪ 2) = EQM′(1∪ 2)− EQM′(1)− EES

QM′(1∪ 2)

≈ EQM′(1∪ 2)− EEE
QM′(1)

(4.5)

Where EEE
QM′(1) denotes an energy calculation of region 1 embedded in QM’

charges from region 2. We embed in QM’ charges since the role of the embedding

is to reflect the electrostatic interactions between regions 1 and 2 at the QM’ level of

theory.

By inserting approximations 4.4 and 4.5 in to equation 4.3, we obtain a total en-

ergy expression:

EOEEC
QM:QM′(1∪ 2) = EEw

QM(1) + EQM′(1∪ 2)− EEE
QM′(1) (4.6)

The hybrid gradients are defined accordingly.

To relate this equation to molecular clusters, a graphical representation of our

OEEC model is shown in Figure 4.2. The OEEC model is comprised of two regions,

the central region 1 (corresponding to zone I in the Ewald program) and nearest-

neighbour molecules (2). Region 2 should be large enough to include the most im-

portant short-range non-electrostatic interactions with the QM cluster. The buffer

region defined for Ewald (zone II) does not necessarily correspond to region 2.

In the OEEC scheme, Coulombic interactions of any distance between region 1

and the crystal are described at the higher level of theory (QM). For excited state
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+ -=

Excited state calculation (QM)

Ground state calculation (QM’)
Point charges from ground state population 

analysis

Ewald fitted point charges

Region 1 embedded in an Ewald 
charge background

Regions 1 and 2
Region 1 embedded in charges 

from region 2
Combined cluster model energy

FIGURE 4.2: Visual representation of the main energy equation
for the Ewald Embedde Cluster model.

calculations, this represents the interaction between an excited central region and

the environment in the ground state, unless particular charges are considered in the

Ewald algorithm (vide infra). In contrast, the short-range non-Coulombic interac-

tions between 1 and 2 are considered at the QM’ ground state level, which recovers

some of the short-range contributions and improves the description provided by

PCE. Since non-Coulombic interactions are considered in the ground state, for fixed

geometries the energy gaps are equivalent to those obtained with the PCE. The se-

lection of the QM’ level of theory depends on the available computational resources.

Previous studies on truncated cluster models have shown that low levels of theory

such as HF/STO-3G achieve accurate results.11,14–17

In order to consider the response of the environment to the excitation and recover

mutual polarisation effects, we employ the extension of self-consistent Ewald em-

bedding to excited states proposed by Wilbraham et al.17. Mutually polarising em-

bedding methods have been applied to a number of ground state systems.63,116,150,151

In the self-consistent approach, a QM-level calculation is carried out on a quantum

cluster. A population analysis is then applied and the charge values are re-assigned

to the equivalent positions in the crystal. Those charges are then fitted using Ewald

and another QM calculation is carried out. The loop between Ewald fitting and

population analysis is repeated until convergence of the atomic charges. The new

charge background is used for the electrostatic embedding of 1. In fromage, the

self-consistent approach is implemented for the PCE and the QM/QM’ approaches
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TABLE 4.1: Embedding models used in this study

Acronym Full name Description

PCE Point Charge Embedding
Point charge embedding fitted to
match the Ewald potential

SC-PCE-S1
Self-Consistent Point Charge Em-
bedding

PCE computed self consistently in
S1

SC-PCE-S0
Self-Consistent Point Charge Em-
bedding

PCE computed self consistently in
S0

OEC ONIOM Embedded Cluster
QM:QM’ ONIOM cluster model
with the QM region embedded in
charges from the QM’ region

OEEC ONIOM Ewald Embedded Cluster
OEC with the QM region embed-
ded in charges from PCE

SC-OEEC-S1
Self-Consistent ONIOM Ewald Em-
bedded Cluster S1

OEC with the QM region embed-
ded in charges from SC-PCE-S1

SC-OEEC-S0
Self-Consistent ONIOM Ewald Em-
bedded Cluster S0

OEC with the QM region embed-
ded in charges from SC-PCE-S0

(SC-PCE and SC-OEEC). We consider two versions which may represent different

physical situations in the crystal (discussed in section 4.4.1). The first, SC-PCE-S1,

closely corresponds to the embedding proposed by Wilbraham et al.; it uses excited

state charges as an initial charge background and iterates with excited state popula-

tion analyses. The second, SC-PCE-S0, has a ground state initial charge background

and performs ground state population analyses. We extend these methods to SC-

OEEC-S1 and SC-OEEC-S0. For ease of reading, the embedding models are listed in

Table 4.1. Note that it is impossible to provide a self-consistent charge environment

where the central molecule is in the excited state and the surrounding ones are in

the ground state, if we are to preserve the periodicity of the Ewald method.

For SC-PCE-S1, the convergence of the charge values can be sped up by starting

the loop from a ground state population analysis embedded in ground state Ewald

charges. The final background was found to be very similar, with an RMSD of 10−5

e− for atomic charges. Another alternative is to perform the loop on a molecule

which has already been optimised in the excited state using OEEC. In this case, the

equilibration of the charge background is made to match the excited state minimum,
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however this implies assigning charges from an excited state minimum configura-

tion to region 2 molecules which are in their ground state minimum geometry.

Figure 4.3 describes the structure of fromage. The charge background can be

chosen to be computed self-consistently and the geometry optimisation can be set

to search for ground and excited state minima or MECI. Currently, region 2 is fixed

in place during geometry optimisation, although full cluster relaxation144 is under

development. For SC-OEEC, to recover point charges of the highest quality, the

molecule of interest in the unit cell is first relaxed with OEEC. Furthermore the self-

consistent charge background is computed only for the first step, at the ground state

OEEC geometry, in order to maintain a consistent PES throughout the relaxation.

4.2.3 Origin of Point charges

The usual electrostatically embedded QM:QM’ ONIOM model has the following

energy expression:

EEE
QM:QM′(1∪ 2) = EEE

QM(1) + EQM′(1∪ 2)− EEE
QM′(1) (4.7)

Traditional implementations use charges originating from QM’ calculations in

the embedding of the QM calculation in order to mitigate the overpolarisation aris-

ing when the QM wavefunction approaches the singular potential well of the point

charge.92 The objective is to cancel out errors arising from the point charge approx-

imation in the short range in the first and third terms of equation 4.7. However

this cancellation becomes less exact when the region 1 QM charge density differs

significantly from the QM’ charge density as is the case when considering excited

states. Furthermore, usual ONIOM schemes are designed to account for inter-region

boundaries crossing a bond (and using link atoms to correct the dangling bond).

In the cases discussed herein, the region boundary is defined inter- rather than in-

tramolecularly and most intermolecular contacts are larger than 4 Å, making the

usual choice of point charge less pertinent.

Moreover, in traditional ONIOM QM:QM’, assuming a well behaved cancella-

tion of point charge overpolarisation, the electrostatic potential of region 2 on 1 stems

entirely from the EQM′(1 ∪ 2) term, thus causing the choice of point charges in the
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FIGURE 4.3: Flowchart of a calculation using the ONIOM
Ewald Embedded Cluster (OEEC) and Self-Consistent ONIOM
Ewald Embedded Cluster (SC-OEEC) models. The electronic

program can be chosen by the user.
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embeddings of EEE
QM(1) and EEE

QM′(1) to be of little overall impact as long as they

match. In contrast, equation 4.6 aims to cancel out the potential between the second

and third term, thus relying entirely on the embedding of the first term for a high

quality electrostatic potential of regions 2 and 3 on 1.

Therefore in the implementation discussed herein, we principally use ground

state QM charges in the embedding of the first term and ground state QM’ charges

for the final term. However, all other embedding combinations are available in

fromage. Further extensions of these methods can be implemented to reduce arti-

ficial polarisation88 and make the methods useful for more dense systems.

The alternative scheme where Ewald charges are used for the QM’ calculations

should provide a marginally worse compensation of the inter-region Coulombic in-

teractions. Nevertheless, the results obtained with this embedding scheme are sim-

ilar to those obtained with the cluster charges for HC1. The absorption energies are

only deviated by 0.01 eV from those obtained with the original scheme. In the case

of the emission energies from the K form, the value obtained with this version of

OEEC is 2.24 eV which is in relative good agreement with the results obtained with

other schemes (Table 4.3). Indeed by extending the QM’ point charges to into region

3 the only non-constant term which is artificially added to the energy is the QM’

electrostatic interaction between regions 1 and 3, which should be small compared

to the overall energy differences in the PES, and does not affect excitation energies

for a given geometry.

4.3 Computational Details

The crystal structures of HC1 and HC2 were optimised using PBE-D2 as imple-

mented in Quantum Espresso.152 The plane wave cutoff was 30 Ry and the k-point

meshes were 2x3x2 and 2x2x1 respectively, in accordance with the shapes of the unit

cells. Subsequently, a single point PBE-D2/DZVP calculation was carried out using

CP2K153 to extract RESP, Hirshfeld and Mulliken periodic charges. For AIM charges,

an external program developed by Henkelman et al. was used to process the Quan-

tum Espresso DFT charge density154–157. Molecular RESP charges were first calcu-

lated at HF/3-21G(p) level for comparison with our previous ONIOM (QM:AMBER)
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calculations.131 Every other molecular population analysis (NBO, Mulliken, RESP

for OEEC and SC-OEEC models) used ωB97X-D/6-311++G(d,p) as implemented in

Gaussian.

For the seven charge schemes, 1000 validation points were randomly sampled

in the quantum cluster (in order to measure the accuracy of the fit to the Ewald

potential) and 500 points had their value fixed to create a buffer region. The total

charge background was comprised of 64 unit cells for HC1 and 32 for HC2. These

numbers were chosen so as to create a sufficient amount of point charges114—at

least 10000—while keeping an isotropic distribution in accordance with the shape

and size of each unit cell.

Both molecular crystals were then investigated using a hierarchy of models. First,

PCE was used with all of the charge types described above on a single QM-level

monomer. When possible, the excited state geometries were optimised with TD-

ωB97X-D/6-311++G(d,p). Next, the cluster models were introduced, using RESP

charges from ωB97X-D/6-311++G(d,p) in the embedding of EQM
Ew (1). OEC, OEEC

and SC-OEEC were all employed on a single monomer of the crystal embedded in a

cluster of 21 molecules for HC1 and 16 molecules for HC2. The excited state minima

and S1–S0 MECI were found using fromage. For the location of S1–S0 MECI, the pa-

rameters in Equation 4.1 were initially set to 0.02 Hartree for α, to provide a smooth

minimum of the S1–S0 energy difference and 3.5 for σ. σ was then increased if the

gap was found to be insufficiently small after optimisation of F.

For the comparison of different points along the potential energy surface, we use

the same charge background throughout. This avoids varying classical energy con-

tributions due to charge-charge interactions and different Ewald constants.21 In this

article, we used the charge background obtained for the FC conformation, although

for crystals with significant Frenkel exciton occurrences, S1 self-consistent charges

could provide a better description of the excited states. All backgrounds are avail-

able in fromage, leaving the choice up to the user.

To probe for excitonic effects, the optimised monomer geometries were inserted

into tetramers at the lattice positions, and their excited states were calculated using

TD-ωB97X-D/6-311++G(d,p) and OEEC.

Overall, the QM methods employed were TD-ωB97X-D/6-311++G(d,p) using
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Gaussian, RI-CC2/TZVP and RI-CC2/SV(P) using Turbomole and SA-2-CASSCF(12,11)/6-

31G(d) and MS-2-CASPT2(12,11)/6-31G(d) using Molcas; all with PCE, OEEC and

SC-OEEC. The QM’ method was HF/STO-3G using Gaussian and the low level em-

bedding charges of EEE
QM′(1) were accordingly chosen to be from RESP calculations

at the same level of theory. For the self-consistent population analysis procedure, a

convergence criterion of 0.001 e− for the mean deviation of charge values between

subsequent steps was chosen.

In certain cases, convergence issues occurred in the self-consistent loop such as

divergence or oscillation. To address this, under-relaxation was employed with a

damping factor of 0.75, where each new charge value adopts a weighted average

value of qdamped
n+1 = 0.25qn+1 + 0.75qdamped

n where qn is the charge value at the previ-

ous step, and qn+1 the new charge value obtained in the population analysis.

For excited state self consistent backgrounds, using initial charges from an iso-

lated excited state molecule or an Ewald embedded ground state molecule yielded

the same final background although the latter method converged in fewer steps.

For comparison, single monomers were also optimised in the ground and excited

states using TD-ωB97X-D/6-311++G(d,p) in vacuum and using Polarisable Contin-

uum Models (PCM) and Self-Consistent PCM (SC-PCM) with a dichloromethane

(DCM) solvent as implemented in Gaussian. Exciton couplings were computed us-

ing the diabatisation scheme proposed by Aragó and Troisi, which considers short

and long-range contributions, further discussed in Chapter 5.105

4.4 Results

4.4.1 Localisation of the Excitation: Size of the QM Region

The use of embedding techniques for excited states calculations in molecular crys-

tals presumes the localisation of the excitation over a few molecular units. However,

the degree of localisation is often unclear and unpredictable, conflicting with the in-

trinsic truncation of a cluster model. Therein lies the necessity for different kinds

of embedding techniques which represent different physical situations. Before com-

paring the effect of these techniques, we wish to clarify how they relate to exciton

localisation in our model systems.
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FIGURE 4.4: Selected tetramer configurations from both crys-
tals. The molecule in pink is optimised using OEEC.

In the case of OEEC, the Ewald charges arise from a ground state population

analysis. Consequently, this approach represents a localised excitation in region 1

before the environment has responded to the change in electronic density. To instead

represent the extreme situation where all molecules are excited simultaneously and

are mutually responsive, charges from excited state calculations can be used. We

call this scheme SC-OEEC-S1 (or, in general, SC-OEEC-Sn). If the molecules in the

QM’ region are considered to be in the ground state and the S0 charges are self-

consistently updated and alternative SC-OEEC-S0 scheme can be defined. It is ex-

pected that the SC-OEEC-S1 scheme will perform better in systems where excitation

is highly delocalised and the S1 electron density is significantly different from the

ground state. We have implemented all these schemes in fromage so that the user

can select the most suitable scheme for the system under investigation. The degree

of localisation of the excitation in a molecular crystal will depend on the exciton cou-

pling with neighbouring molecules and the experimental conditions for absorption.

In order to investigate the excitonic features of the excited state electron densi-

ties of the HC1 and HC2 crystals, we consider a tetramer (Figure 4.4) embedded

in ground state Ewald charges as a reference. This model includes the short-range

Coulomb interactions between the central and three surrounding molecules explic-

itly and thus should provide a benchmark to evaluate the ability of the different

embedding schemes to describe the excited states considering a smaller QM region.

Note that in contrast with the monomer, where the bright state is S1, for the tetramer

the bright states are S4 and S5 for HC1 and HC2 respectively.
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FC K*

HC1

HC2

FIGURE 4.5: Sn–S0 density differences obtained at TD-ωB97X-
D/6-311++G(d,p) level of theory for the tetramer model (ex-
cited state density gain upon excitation is shown in orange, and
the loss in blue). For the FC geometries, the tetramer’s bright
states were considered (n=4 for HC1 and n=5 for HC2); for K*,
n=1. All configurations were obtained by optimising the geom-

etry of the central molecule with OEEC.
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Figure 4.5 shows the Sn–S0 density differences obtained for the bright state at

Franck-Condon geometry (FC) and the K* S1 excited state minimum geometries.

The plots for the first five excited states can be found in Appendix A.4. When con-

sidering a full tetramer in the excited state, the bright states of HC1 and HC2 are S4

and S5 respectively, whereas for single monomers, they are both S1. An important

degree of localisation is observed on monomers and dimers for both crystals, despite

four molecules being included in the QM region. Consequently, we expect that with

embedding charges of sufficient quality, a QM region of one or two molecules would

obtain accurate excited state energies.

Excitations in HC1 are more localised than in HC2, which correlates with the

larger exciton couplings obtained for the latter.132 In the case of HC1, only the cou-

pling with molecule B is larger than 0.1 eV (Appendix A.4). For both crystals, in the

K* minimum, the excitation is clearly localised in the central molecule, which sug-

gests that schemes such as OEEC and SC-OEEC-S0 could be best suited to describe

this kind of situations (see discussion in the next sections). Additionally, the QM re-

gion with only one monomer should be able to describe emission from the K* form,

which is confirmed by the evolution of the energies with the size of the region (see

section 4.4.3).

4.4.2 Point Charge Embedding: Electrostatic Effects in the Crystal

Having now observed the localisation of the excitation upon fluorescence, we can

begin assessing the performance of different embedding methods with only one

monomer in the QM region. In this section, we analyse the performance of the PCE

model and the effect of using different charges for the description of excited states

in the HC1 crystal. Our analysis is based on the results obtained with a monomer in

the QM region.

The experimental absorption in the solid state shows two bands which have pre-

viously been attributed to absorption from the E and K forms.134,158 Our calcula-

tions show that neither the crystal composed of K molecules nor the one with K

surrounded by E molecules are stable in the solid state. Additionally, the experi-

mental crystal structure does not seem to be consistent with a significant population

of the K form in the ground state.158 Taking this into account, the presence of K in
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TABLE 4.2: Absorption, emission and K-MECI energies (in eV)
of HC1 embedded in different types of Ewald point charge
arrays. Unless specified the geometries were obtained at the
ONIOM(TD-ωB97X-D/6-311++G(d,p):AMBER) level of theory.
K-MECI energies are relative to the ground state energy of
the Franck-Condon (FC) minimum.132 †Optimised geometries
within the PCE environment. † †Geometry optimised in vac-

uum

Method Charges Absorption Emission S1-S0

Type Basis FC(E) E* K* K-MECI

Molecular

TD-ωB97X-D/
6-311++G(d,p)

NBO

6-311++G(d,p)

3.28 3.10 2.67 4.35
RESP 3.30 3.12 2.66 4.41

RESP (SC-PCE-S1) 3.09 2.96 2.65 4.72
RESP† 3.37 - 2.69 4.37

Mulliken 1.56 1.51 1.47 4.42

Mulliken 3-21G(d) 3.29 3.11 2.70 4.76
Mulliken 6-31G(d) 3.35 3.16 2.70 4.68

RI-CC2/SV(P) RESP
6-311++G(d,p)

3.11 2.95 2.35 3.82
RI-CC2/TZVP RESP 2.98 2.82 2.29 3.56

Crystal

TD-ωB97X-D/
6-311++G(d,p)

RESP

DZVP

3.33 3.15 2.68 4.32
AIM 3.35 3.16 2.68 4.30

Hirshfeld 3.43 3.23 2.68 4.56
Hirshfeld† 3.50 3.20 2.28 2.89
Mulliken 2.95 2.85 2.64 4.20

No charges

TD-ωB97X-D/
6-311++G(d,p)

- - 3.52 3.31 2.67 4.76
-† † - 3.65 3.28 0.36 2.84

- Experimental134,158 - 2.9, 3.3 - 1.7–1.9 -
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the ground state seems to be associated with dynamic processes activated in the ex-

perimental conditions. For example, at room temperature, large amplitude motions

of the proton along the H-bonded bridge can reduce the S1–S0 energy gap to 2.76 eV,

considering vibrational broadening. Additionally, given the ultrafast nature of the

proton transfer in the solid state (3 ps158), fast absorption from K forms generated

in the excited state could be also possible. The dynamic nature of these processes is

in line with the broad structure of the low energy band. Our focus is the analysis of

the higher energy band which corresponds to the absorption in the E form.

To estimate the effect of vibrational broadening on the position of the absorption

maximum, we use the nuclear ensemble method159 as implemented in Newton-X160

with TD-ωB97X-D/6-311++G(d,p) embedded in RESP charges. In this method, a

normal mode calculation of the molecule is carried out in the ground state. Geome-

tries are then sampled from these normal modes using a Wigner distribution, and

vertical absorptions are calculated at each sampled point. The position of the E ab-

sorption maximum (3.21 eV, 0.1 eV shift with respect to the vertical excitation with

the same method) is in excellent agreement with the experimental value (Appendix

A.2).

To directly evaluate the effect of charges of different origin, we compare absorp-

tion, emission (from E* and K* forms), and S1–S0 MECI energies with Ewald embed-

ding. Given that the MECI associated with the enol pathway was consistently found

to be at least 4 eV higher in energy than its keto counterpart, we will focus on the K-

MECI deactivation pathway. The results are summarised in Table 4.2. In order to di-

rectly compare the impact of different charge partition schemes, we use the same ge-

ometry throughout, obtained at the ONIOM(TD-ωB97X-D/6-311++G(d,p):AMBER)

level of theory.132.

Excited state calculations with PCE using non-Mulliken charges predict the max-

imum of absorption with close agreement to the experimental value of 3.3 eV. Over-

all, the effect of the embedding is to shift absorption to the red with respect to the

energy obtained in vacuum (3.65 eV). For calculations at fixed geometries, there is

no significant dependence on whether the charges are obtained from molecular or

crystal calculations. In particular, the energies obtained using RESP charges are con-

sistent between the molecular and the crystal descriptions. In the context of the
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molecular organic crystals, this is not surprising as RESP charges are designed to

match the electrostatic potential, and crystal packing has but a small effect on the

electronic structure of these molecules due to their non-bonded nature.

In contrast, calculations using Mulliken charges strongly depend on the choice

of basis set (both the size and the type). With these charges, results with smaller

basis sets are closer to the experimental value. They provide reasonable energies

with 3-21G(p) and 6-31G(d), but fail to reproduce sensible values if a larger basis

set is used (6-311++G(d,p)). This is in line with the well-known sensitivity of the

Mulliken method to the basis set.

The experimental emission in the solid state has been attributed to the K* form.132

Regardless of the higher stability of K* in the excited state, emission from the E* form

is expected to be close to the initial absorption and consequently reabsorbed. Ac-

cordingly, our TDDFT calculations predict emission from E* in the range of 3.1–3.3

eV. Interestingly, emission from the K* form (∼2.7 eV) is significantly deviated from

the experimental values (1.7–1.9 eV).134,158 This is not improved by using self-consistent

point charges in the SC-PCE-S1 method, which is to be expected due to the localisa-

tion of the excited state to one molecule (Figure 4.5). When the emission is calculated

using RI-CC2, the energy is improved but is still deviated by more than 0.5 eV from

the experiments.

The most significant factor is the geometry itself, obtained at QM:MM level. We

show later that a better emission energy is obtained when optimisation is done us-

ing the OEEC and SC-OEEC methods. When it comes to the optimisation of excited

state minima and S1–S0 MECI, the PCE approach was unsuccessful in locating sta-

ble minima for most charges types, due to the lack of non-Coulombic short-range

interactions and ensuing overpolarisation effects. Only Hirshfeld and, in certain

cases, crystal RESP charges were overall small enough in magnitude to allow for the

determination of local minima, with the largest charge on an atom od 0.5 e−. As

such optimisation with PCE in general is not recommended for systems with a high

degree of conformational flexibility.

As for S1–S0 MECI energies, all TDDFT results for the QM:MM geometries are

more than 1 eV above the FC bright state energy (Table 4.2). The conical intersections

are thus rendered inaccessible as expected since HC1 displays aggregation-induced
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FIGURE 4.6: Energies HC1 in vacuum and embedded in RESP
and crystal Hirshfeld Ewald charges at different geometries.

QM:MM energies were taken from Ref 132.

emission. The energies obtained with RI-CC2 are in the range of 0.6–0.7 eV above

their corresponding excitation energies which also makes them inaccessible. These

results are consistent within the RACI model but are overestimated with respect to

the value of 3.97 eV obtained with QM:MM with a dimer in the QM region.132

In the case of RESP charges, optimisation within the PCE model does not sig-

nificantly change the energetics previously evaluated with single point calculations.

Indeed the structures are close to those reported at the QM:MM level of theory. The

resulting relative energies are shown in Figure 4.6. For Hirshfeld charges, the effect

of optimisation is more significant reducing the K* emission energies to 2.28 eV and

making the S1–S0 MECI accessible.

Comparing the calculations in PCE and vacuum at the same geometry highlights

the main effects of the crystal electrostatic environment in the excited state. The

excited states are overall stabilised which reduces both the vertical excitation and

conical intersection energies. However the accessibility of the latter depends on the

former, netting no clear difference in emissive behaviour. A more substantial rela-

tive stabilisation of the MECI is observable when the molecule is fully optimised in

vacuum. It reaches a highly distorted geometry which would be inaccessible in the

solid due to short-range interactions of the closely packed neighbouring molecules.

Our simulations show some of the drawbacks of the PCE method, in particular

for its use in geometry optimisation. Because of the effects of overpolarisation and

the lack of short-range non-Coulombic interactions, electrostatic forces can become
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too large and some nuclear configurations become unstable. Consequently, we do

not recommend the use of PCE for geometry optimisations. While the method is

effective in some cases,16,161 it is unpredictable whether it will provide reliable ge-

ometries for all regions of the PES. To mitigate these problems we implemented a

two level embedded cluster model.

4.4.3 Embedded Cluster Models: Potential Energy Surfaces in the Crystal

We obtained the geometries of notable regions of the PES for HC1 and HC2 crystals

using the OEEC and its self-consistent variant SC-OEEC methods. Table 4.3 shows

the absorption and emission energies obtained after optimisation of FC and K* forms

using these models.

TABLE 4.3: Table of absorption and emission energies for both
model systems after geometry optimisation with cluster mod-
els. The level of theory was TD-ωB97X-D/6-311++G(d,p). En-

ergies are in eV.†Charges obtained for the K* form in S1

Cluster model
HC1 HC2

FC K* FC K*

OEEC 3.37 2.06 3.41 2.07

SC-OEEC-S1 3.08 2.60 (2.12)† 3.34 2.15

SC-OEEC-S0 3.27 2.19 3.40 2.07

OEC 3.27 2.40 3.42 2.03

PCM 3.32 2.36 3.72 2.44

SC-PCM 3.00 2.66 3.01 2.21

ONIOM QM:MM (molecule)132 3.32 2.72 3.50 2.17

ONIOM QM:MM (dimer)132 3.27 2.61 3.29 2.19

Experimental134,158 2.9,3.3 1.7 - 1.9 - 1.8

Geometry optimisation using the embedded cluster method produces ground

state geometries very similar geometries to QM:MM, consequently the absorption

energies are not significantly altered between PCE (Table 4.2) and OEEC or SC-PCE-

S1 and SC-OEEC-S1 provided that RESP charges are used throughout (Table 4.2). For
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FIGURE 4.7: Deviation of the predicted emission energies of
HC1 and HC2 with respect the experimental values by different
embedding models. Reference experimental values were 1.8 eV

for both HC1 and HC2 crystals

comparison, we have added the results obtained with ONIOM (QM:MM) including

one and two molecules in the QM region and with the OEC model. Moreover, we

present results in PCM and its self-consistent variant, both in DCM solvent, since

continuum models are a common method employed to reflect the electrostatic envi-

ronment in molecular condensed matter.162

For all cluster models, the effect of the polarised response of the environment is

to reduce the vertical excitation. This is also observed in the comparison between

the PCM and SC-PCM models and when the size of the QM region increases from

a molecule to dimer. The results obtained with the SC-OEEC procedure depend on

the level of excitation in the self-consistent loop. If ground state charges are used,

as expected, the energies are similar to those obtained with OEEC (3.27 and 3.37 eV

for HC1 and 3.40 and 3.41 for HC2). The emission energies obtained with different

methods strongly depend on the rotation angle (Figure 4.1). In vacuum, the excited

state minima show a significant deviation from their ground state planar structure.

In the solid state, the K* geometries obtained with QM:MM and SC-OEEC-S1 are

more planar (HC1: 6° and 9°, HC2: 16° and 12° respectively for the angle depicted

in Figure 4.1) than those obtained with OEEC (HC1: 32°, HC2: 18°).

The optimisation of the K* form with the OEEC model significantly improves the

emission energies with respect to those obtained using QM:MM geometries. Figure

4.7 summarises the deviation of the calculated emission energies with respect to the

experimental data.

For HC1, the result is 2.06 eV (TD-ωB97X-D/6-311++G(d,p)), which is in close
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agreement with the experimental value. As with the PCE method, the self-consistent

background based on the excited state charges at the FC state does not improve the

results (2.6 eV). If ground state E charges are employed in the self-consistent loop,

the emission energies remain in better agreement with the experimental values. In-

deed, given the level of localisation of the excitation in these systems (Figure 4.5), the

use of ground state charges seems to be more appropriate (SC-OEEC-S0) with emis-

sion energy of 2.19 eV. An alternate version of SC-OEEC-S1 is also employed where

the self-consistent loop is carried out on a molecule in its OEEC optimised K* geom-

etry, which brings the emission energy to 2.12 eV. However, this charge background

represents the situation where all molecules in the crystal exhibit charges from the

keto form, which we have not found to be a stable minimum in the crystal.

Comparison of the OEEC with the OEC model indicates that long-range inter-

actions account for more than 0.3 eV in the K* emission energy of HC1. Interest-

ingly, while the energies for HC1 strongly depend on the charge background, the

values for HC2 are less affected. In the case of HC2, SC-OEEC, OEEC and OEC

all provided very similar results (2.15, 2.07 and 2.07 eV), suggesting that the most

important Coulomb effects are recovered at the short-range. This is linked to the dif-

ference between the ground and excited state charges of these molecules. For HC1,

excitation significantly alters the charges of carbon atoms in the bridge, since it con-

centrates a large fraction of the molecule’s π orbitals (Appendix A.3). In the case of

HC2 only the charge of the carbonyl carbon (Ck) changes more than 0.1 e− upon ex-

citation, since the electronic reorganisation is concentrated in the back ring (Figure

4.5). Consequently, the S1-S0 energy gaps for HC1 are far more dependent on the

electrostatic environment. Indeed improving the description of the short-range in-

termolecular interactions does not significantly alter the energy gaps, as illustrated

by the behaviour of the absorption and emission energies with the size of the QM

region (see end of section). For both, HC1 and HC2, the emission from K* is fairly

well reproduced with only one molecule in the QM region, which is in line with the

localised nature of the K* (Figure 4.5).

Conical intersections play a key role in photophenomena, providing a radiation-

less decay funnel for the excited state. One of the features implemented in fromage

is the searching of crossing geometries using the penalty function method of Levine
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FIGURE 4.8: MECI geometries found with SA-2-
CASSCF(12,11)/6-31G(d) and TD-ωB97X-D/6-311++G(d,p).
Additionally, we include the configuration with least S1–S0
gap when scanning the β angle from the TDDFT geometry at

MS-2-CASPT2(12,11)/6-31G(d) level. It is labelled CASPT2.

et al.143 The molecules considered here can deactivate to the ground state in solu-

tion via conical intersections associated with intramolecular rotation.131,132 We op-

timise the S1–S0 MECI with the SA-2-CASSCF(12,11)/6-31G(d) and TD-ωB97X-D/

6-311++G(d,p) methods within the OEEC scheme (Figure 4.8). For these systems,

the geometries obtained with both levels of theory are in very good agreement.

In the crystal, the lowest energy conical intersection combines intramolecular ro-

tation and a significant pyramidalisation of the carbonyl carbon.132 In the gas phase,

the lowest energy conical intersection only involves intramolecular rotation while

the one also involving pyramidalisation is higher in energy. Therefore one of the

effects of the crystal environment is to modify the stability of the lowest energy

conical intersections, which is consistent with the results obtained with QM:MM

calculations. This confirms that the effect of short-range interaction is essential in

determining the geometry while the long-range interactions modulate the total en-

ergy. However, the net effect of the embedding on the total energies is highly system

dependent.

Figure 4.9 shows the PES obtained with multireference methods. The vertical ex-

citation obtained with SA-2-CASSCF(12,11)/6-31G(d) is significantly deviated from

the experimental value (4.25 eV compared to 3.3 eV). Including dynamic electron

correlation with MS-2-CASPT2(12,11)/6-31G(d) shifted the value to the red in much

better agreement (3.53 eV). The energy gap at the CASSCF conical intersection is too
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FIGURE 4.9: Relative energy diagrams showing the emission
energy and accessibility of the MECI with multireference meth-
ods at the geometries shown in Figure 4.8. To minimise the
CASPT2 S1–S0 gap at MECI configurations, a geometry scan
was carried out as described in Figure 4.10. The newly opti-
mised geometry is labelled “CASPT2 scan” and has a gap of

0.10 eV.

large with PT2 (1.02 eV), but using TDDFT geometries as reference can significantly

narrow the gap. These are common challenges found in multireference calculations

and not due to the embedding approach.163–165 In order to further narrow the S1–S0

gap, the aromatic C was systematically displaced via the β angle (Figure 4.8). Figure

4.10 shows how this scan locates a conical intersection at an energy 0.8 eV above the

FC energy. These examples show that the Ewald embedding methods can provide

all the information required to fully characterise the PES in molecular crystals. All

of these methods are available in fromage.

Given that the Ewald embedding methods describe the effect of the electrostat-

ics of the whole crystal, they represent unique schemes to analyse the convergence

of properties with the size of the QM region. Exploring these effects is essential in

systems with significant excitonic effects. We consider the behaviour of the energies

and the accessibility of the S1–S0 MECI with the size of the QM region (Figure 4.11).

We employ the TD-ωB97X-D/6-31G(d) level of theory, which provides a good de-

scription of different regions of the PES. For HC1, the energies of the bright state for

FC and of the emission from K* converge relatively quickly. On the other hand, the

energy of the S1–S0 MECI increases with the size of the QM region for HC1 and de-

creases for HC2 respectively becoming less and more accessible. This is in line with
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FIGURE 4.10: Plot of the S1–S0 gap, and the MECI accessibility
as a function of the puckering angle β. The accessibility is de-
fined as the average S1–S0 energy of the given geometry minus
the FC bright state energy. The OEEC energy at the geometry

with smallest S1–S0 gap is indicated by dashed lines.

the experimental behaviour of both crystals.

4.5 Conclusion

In this chapter, we analysed the behaviour of different Ewald embedding schemes

for the description of excited states in molecular crystals. With focus on the ex-

ploration of potential energy surfaces, we have implemented these methods in the

Python open-source platform fromage, which we make readily available. This pro-

gram enables users to easily combine electronic structure codes of their choice for

geometry optimisation using OEC, OEEC and SC-OEEC. The current implemen-

tation includes interfaces to popular quantum chemistry programs such as DFTB+,

Turbomole, Gaussian and Molcas. Additional interfaces can be easily implemented,

provided that the new codes allow for gradient calculations with point charge em-

bedding.

We have shown that the PCE method is poorly suited to optimising the geometry

of flexible molecules in the crystal form. Consequently, the photochemical conclu-

sions that arise from PCE calculations of such molecules have the potential to be

quantitatively and qualitatively erroneous. To overcome this problem, a series of

two-level ONIOM(QM:QM’) cluster models with Ewald embedding were formu-

lated. They are suitable for geometry optimisation of excited state minima and
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FIGURE 4.11: Energy of the absorption, emission and conical
intersection as the excited state region increases in size using
the OEEC model. The region molecules are added to the region
in the order displayed in Figure 4.4. The energies are evaluated

with TD-ωB97X-D/6-31G(d).

conical intersections, and include long range electrostatic system-environment in-

teractions within the crystal, thus addressing the fault in traditional cluster models

outlined in Section 2.8.1.

The potential of these tools was illustrated by applying them to the excited states

of two model crystals, HC1 and HC2, displaying excited state intramolecular proton

transfer. HC1 displays aggregation induced emission whilst HC2 shows no emis-

sion in solution or solid state. For both systems, the excitations are clearly localised

in one or two molecules which allowed the emission energies to converge with only

a monomer or a dimer in the QM region. We found that using charges originating

from molecular or crystal calculations did not significantly impact the results. The

emission energy was progressively improved with a hierarchy of embedding mod-

els, ranging from a deviation from the experimental emission peak of 0.8 eV with

ONIOM QM:MM to 0.2 eV with OEEC. Due to the flexibility of the molecules, this

increase in accuracy could only be achieved by carrying out geometry optimisation

with each embedding model.

Self-consistent procedures help to model the mutual polarisation between the

excited state region and the environment, a known problem of ONIOM models pre-

sented in Section 2.8.3. In particular, if the self-consistent loop is carried out in the

excited state, these procedures may help reflect the delocalisation of an excitation
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despite explicitly modelling fewer excited fragments than are involved in the de-

localisation. For the systems considered in this study, the degree of localisation in

both the absorption and emission processes made excited state self-consistent em-

bedding unsuitable. The application of the self-consistent procedure to the ground

state did not significantly alter the results obtained from the corresponding non-

self-consistent procedure which suggests that the electronic structure of the isolated

ground state molecule is not particularly altered by crystal packing.

With these conclusions in mind, we can suggest optimal embedding methods for

the study of the photochemistry of different molecular crystals. If the molecule is

certain to be structurally rigid and the exciton couplings are small, the PCE scheme

can be appropriate. Otherwise, cluster models are preferred since they allow for

exploration of the nuclear configuration space. In either case, long range electrostatic

interactions can account for a significant contribution to the excited state energy.

Comparison between excitation energies obtain with truncated cluster models and

single point calculations with Ewald embedding methods can help decide whether

these methods are required.

The size of the QM region should be motivated by the locality of the excitation at

the noteworthy points of the PES which can be estimated by the calculation of exci-

ton couplings between molecular fragments in their lattice positions. These coupling

values can, in turn, be estimated as half of the S2–S1 energy gap for the dimer166 or

by using more sophisticated methods (see Section 5.3.2). For localised excitations,

ground state background charges can be a good choice (either OEEC or SC-OEEC-

S0). If the excitation is delocalised and the QM region becomes impractically large,

the SC-OEEC-S1 method can provide a better description of the excited states. We

believe the use of these methods will contribute to a better understanding of com-

plex photochemical processes in the crystal environment, impacting a broad range

of applications.
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Chapter 5

Implementationfromage
5.1 Introduction

Chapter 4 should provide enough evidence that studying the photochemistry of

some molecular crystals at the finite scale is a sensible idea. In fact, the structural

features which are relevant to these systems are of the scale of the aggregate, rang-

ing from monomer conformation and dimer packing all the way to molecular cluster

shape.

The methodology already existing to model finite size molecular aggregates can

therefore in part be repurposed to model periodic molecular crystals when dealing

with excited state processes. The commonplace approach to investigating molecular

crystals—using periodic electronic structure codes—should thus be complemented

by adequately extending molecular aggregate methods for the excited state.

The generation and analysis of these aggregate nuclear configurations is often

separated from the codes which produce their corresponding electronic structure.

Whilst the former tasks are typically less computationally demanding than the lat-

ter one and therefore might be added as an auxiliary feature to a larger code (e.g.
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Crystal17167), they often require a degree of flexibility which situates them more

comfortably in the realm of the programming library. Indeed the bridging of scales

between the periodic crystal, finite cluster, dimer, and monomer is challenging to

generalise due to the formidable conformational variety of organic molecules.

An optimal strategy is therefore to provide modular tools for the investigator

to tailor to their system, accompanied by ready-made scripts which compile those

tools for use in ubiquitous cases. In this way, non-expert users are able to use the

program’s principal features with a reliable degree of robustness, whilst more com-

fortable users can repurpose and extend the code to better suit fringe cases.

There exists a variety of computational chemistry scripting libraries for different

tasks, with the ecosystem in rapid development. Their promise is to optimise and

standardise the research workflow for increasingly specialised operations thanks to

robust, tailored tools. The Cambridge Structural Database (CSD) Python API168 fo-

cuses on crystallographic property analysis, accessing its associated database. The

Atomic Simulation Environment (ASE)169 specialises in interfacing with numerous

electronic structure codes and communicates with them via Python scripting or a

GUI. RDKit170 provides programming tools for general purpose chemoinformatics

and is itself used in numerous child libraries. Chemshell provides additive QM:MM

interfaces between electronic structure and forcefield codes.171 Libra is a library de-

signed for the development of quantum and classical dynamics.172 To our knowl-

edge, there still lacks a library dedicated to the examination of photochemistry in

molecular aggregates and crystals, exploiting the overlap in methodology between

the two materials.

To address this, we offer the FRamewOrk for Molecular AGgregate Excitations

(fromage). fromage is a standalone Python library, accompanied by ready-to-use

command line scripts destined to facilitate the study of molecular aggregates in

the excited state. They are summarised in Figure 5.1. The program is tested for

Python 2.7 and 3.6, though the authors do not guarantee backwards compatibility

with Python 2 in future releases. For geometry manipulation routines, the program

only relies on the unit cell’s Cartesian structure and lattice vectors. From this in-

formation, the user can obtain unique dimer configurations, molecular clusters and

general structural information.
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All of the electronic structure calculations are performed by popular quantum

chemistry programs. Currently, interfaces are provided to run calculations in DFTB+,142

Gaussian,139 Molcas,140 and Turbomole.141 By delegating these calculations to differ-

ent programs, their results can be combined into hybrid energy expressions. Thus

fromage can perform ONIOM calculation—including those discussed in Chapter

4—whilst taking advantage of the diversity of modelling methods of several pro-

grams instead of only one.61

fromage has been used to study various QM:QM’ electrostatic embedding schemes

for applications in photoactive molecular crystals,61 the aggregation induced emis-

sion process in propeller-shaped molecules,173 and the design principles for proton

transfer luminescent materials.174

Users interested in using the program should refer primarily to the full docu-

mentation, available at https://fromage.readthedocs.io/. It contains tutorials, and

technical instructions for all primary operations. This chapter presents an overview

of the program’s capabilities, though readers wishing to use them should refer pri-

marily to the documentation. First we describe the program structure, illustrated by

basic usage examples. Then we enumerate its principal features, namely geometric

analysis, exciton coupling evaluation and ONIOM QM:QM’ models. This final point

addresses the problems of inadequate implementation for cluster models in organic

molecular crystal photochemistry discussed in Section 2.8.4.

5.2 Program Structure

5.2.1 Principal Classes

fromage makes use of two main classes in most of its operations, Atom and Mol. An

Atom object is defined as a point in Cartesian space with associated physical prop-

erties. If the point is to represent an atom, supplying its element string provides

standard properties such as covalent radius or atomic mass. The partial charge can

also be specified, which can become useful in representing both atoms and point

charges.

In practice, the user has little direct interaction with Atom objects. Instead they

manipulate Mol objects, which contain a list of the former. Mol extends common

https://fromage.readthedocs.io/
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Self-consistent
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FIGURE 5.1: Principal features of fromage.

Python list methods via composition, allowing for intuitive appending, indexing,

iterating etc. but also provides methods to manipulate molecular aggregate geome-

tries and unit cells. Mol objects can be created explicitly or generated from a typical

geometry file such as .xyz. For instance, one may generate a molecular cluster and

a supercell from unit cell information as illustrated in Figure 5.2.

Apart from the constituent atoms and lattice vectors, Mol also has attributes per-

taining to the definition of a bond within the collection of atoms. Two atoms are

said to be bonded when their distance falls below a certain threshold mol.thresh.

This distance can be measured from nucleus to nucleus but also from the edge of

the spheres of van der Waals radius or covalent radius. The method is selected by

varying the mol.bonding attribute. Having this flexibility is required for highly dis-

torted molecular geometries or diverse element combinations. Armed with the def-

inition of a bond, the Mol class can single out covalently bonded complexes from

an aggregate, generate molecular clusters from a single crystal and detect atomic

connectivity.
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FIGURE 5.2: Example of use of fromage as a Python library. The
three dimensional structures are shown in orthographic projec-

tion.

These tools are in and of themselves useful as a library for the Python literate

user. However, several ready-made scripts are supplied for more complicated pro-

cedures and frequently required operations. Of the most practical use is perhaps

fro_uc_tools.py, a command line script which performs operations related to unit

cells. It is essential for comfortably communicating between periodic and finite sys-

tems which is a central concept in fromage. For instance, given a unit cell geometry

file cell.xyz and a text file with the lattice vectors vectors, the line:

fro_uc_tools.py cell.xyz vectors -r 15

will produce a file cluster_out.xyz containing the geometry of a cluster of whole

molecules where all atoms lie within a radius of 15 Å from the origin.

The other scripts are used to operate on unit cells, clusters, dimers and monomers.

They are discussed in section 5.3 and represented in Figure 5.3 along with the core

class structure.

5.2.2 Dependencies

The most common calculation performed by the geometry manipulation routines is

the evaluation of interatomic distances. Therefore, for an overall speedup, these

distances are calculated in C++ and wrapped as a Python function using SWIG.

Some other more involved operations are sped up by using the numpy175 library.

Geometry optimisation is carried out with the BFGS implementation in scipy.176
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Atom

+ x, y, z, q : float
+ connectivity : frozenset

+ set_pos(3 x 1 np array) : None
+ dist(Atom) : float
+ per_dist(atom, 3 x 3 np array) : float
+ es_pot(3 x 1 np array) : float

GeomInfo

+ coord_array : np array
+ plane_coeffs : np array
+ prin_ax : np array
+ sec_ax : np array
+ perp_ax : np array

Mol

+ atoms : list of Atoms
+ vectors : 3 x 3 np array
+ bonding : str
+ thresh : float
+ geom : GeomInfo

+ write_xyz(): None
+ centroid() : float
+ translate(3 x 1 np array) : None
+ select(int) : Mol
+ segregate() : list of Mols
+ complete_cell() : Mol, list of Mols
+ confined() : Mol
+ supercell(3x1 np array) : Mol
+ make_cluster(float) : Mol

Dimer

+ mol_a, mol_b : Mol
+ alpha : float
+ beta : float
+ gamma : float

+ write_xyz() : None
+ angles() : 3 x 1 np array
+ inter_distance() : float
+ same_geom(Dimer) : bool

fro_assign_charges.py

Redistribute partial atomic charges onto an
aggregate via connectivity

fro_coupling.py

Evaluate the exciton coupling in a given dimer

fro_exciton classification.py

Calculate indices classifying a TDDFT excited state
as a localised, delocalised, or CT exciton

fro_dimer_tools.py

Extract the unique dimers from a unit cell or
aggregate and analyse their conformations

fro_uc_tools.py

Use a unit cell to produce a supercell, molecular
cluster or other aggregate geometry

fro_volumetrics.py

Analyse the available volume of a fragment in an
aggregate geometry and print it out as a cube file

fro_prep_run.py

Starting from a unit cell geometry, produce the
necessary template files and embedding charges
for an ONIOM cluster model calculation

fro_run.py

Perform a geometry optimisation to find an energy
minimum or MECI using an ONIOM cluster model
across a range of electronic structure programs

a) b)

FIGURE 5.3: a) Principal class diagram of fromage b) Descrip-
tion of the main callable modules.

The program Ewald by Derenzo et al.113,114 is used for the fitting of point charges

to the Ewald potential. It is modified to allow the use of partial charges and redis-

tribution with permission from the authors here https://github.com/Crespo-Otero-

group/Ewald.
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5.3 Features

5.3.1 Geometrical Analysis

Voronoi Volumes

The conformational freedom of a molecule in the gas phase is only limited by its

structural features and how they relate to the potential energy surfaces (PES) of par-

ticular reaction coordinates. The electronic excitations within a molecule can in gen-

eral be rationalised by scrutinising and comparing its different PESs. In contrast, in

condensed phases, a molecule’s freedom of nuclear reorganisation is hindered by

the close packing imposed by its environment. The study of the effect of this close

packing on excited state PESs and photochemical behaviour is a vast topic and in-

volves an accumulation of inter-related factors both electronic and nuclear in nature

which are often hidden behind the deceptively concise term of steric hindrance.132,135

It is however appropriate to begin such an investigation by obtaining computa-

tionally inexpensive and easily interpretable features of the packing of the aggregate.

A routine approach for crystals is dividing the unit cell volume by the amount of

molecules in the cell to find the average volume Vc assigned to the molecule within

the packing pattern in order estimate the tightness of packing. However this volume

is difficult to compare between crystals composed of different molecules and is not

visualisable. The determination of Voronoi volumes for molecules in aggregate is a

promising alternative.

In an aggregate of atoms a point belongs to the Voronoi volume of a given molecule

if the atom it is nearest to belongs to that molecule. The application of Voroni cells177

to molecular systems has successfully been used to characterise the geometry of con-

densed phases178 and notably liquids.179 This definition is refined by scaling the dis-

tance metric by the van der Waals radius of the atom; thus, for instance, assigning

more space to oxygen than to hydrogen. For the calculation of distances, we employ

a grid based scheme, which makes it robust and allows us to choose an arbitrary

resolution for the volume.180,181 The resulting Voronoi volume VV can be compared

to the sum of the van der Waals spheres of the atoms in the molecule (counting

their intersection only once) VvdW to obtain a volumetric index Vi = VV
VvdW

which
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c)
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FIGURE 5.4: a) Chemical structure of HC2 b) unit cell of the
HC2 crystal with the asymmetric cell highlighted by colour c)
Profiles of the Voronoi volumes for the four molecules of the

asymmetric cell with their volume index.

gives a normalised indication of the tightness of packing in the crystal for a specific

molecule.

The Voronoi volumes introduce a distinction between inequivalent molecules

in a crystal, and in fact should average out to Vc if the VV values are weighted by

the amount of occurrences of the molecule per unit cell. They can be used in finite

systems such as amorphous clusters and perhaps most importantly, they are visual-

isable. Seeing the shape of a Voronoi volume can indicate the available space in the

aggregate and therefore the areas of the PES least restricted by the environment.

A user may open a cluster geometry file clust.xyz with a visualising program

and choosing which molecule they wish to calculate the Voronoi volume of with

fromage. They identify the molecule by marking down the label of any atom be-

longing to the molecule. Then, upon calling:

fro_volumetrics.py clust.xyz -l [atom label]

the program will generate the files voro.cube, vdw.cube and union.cube which are

the visualisable Voronoi and van der Waals volumes of the molecule, and their union

(in the set theory sense). A file called volumes contains the integrated volume of each

of these.
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An illustrative example is a derivative of 2’-hydroxychalcone (HC1), which upon

the addition of a methoxy group in para position with respect to the hydroxyl group

turns off its emissive character in crystal form, bringing the fluorescence quantum

yield from 0.32 to less than 0.01.134,158 The new molecule is HC2, discussed in Chap-

ter 4. While HC1 exhibits herringbone style packing, HC2 has a complex unit cell

structure whose steric constraints on the individual molecules are unclear at first

glance. Figure 5.4 shows the difference in tightness of crystal packing between in-

equivalent monomers of HC2.

Dimeric Arrangement

Excitations in molecular aggregates are not guaranteed to remain confined to one ab-

sorbing monomer. Indeed, the electronic wavefunctions of the neighbouring molecules

may have enough intermolecular overlap to produce intermolecular electronic inter-

ferences in the excited state. This can manifest in all sorts of photochemical processes

and is central to exciton governed mechanisms like charge transfer or singlet fission.

In crystals, typical packing motifs like herringbone or sheet-like, produce a limited

set of archetypal dimer arrangements such as edge-to-face or face-to-face which

have generalisable excitonic behaviour for chemically similar molecules.107,174 For

instance in face-to-face aromatic systems, ππ interactions are a defining feature of

the excitonic states.

Regardless of whether a researcher is investigating an amorphous cluster or a

crystal structure, it is therefore informative to extract all of the significant dimers in

the system and to quantify their geometrical arrangement in order to classify them

under the principal dimer archetypes at a glance. In fromage, the user can extract the

possible dimers whose distance falls below a given threshold. The intermolecular

distance can be defined either as the centroid-to-centroid distance or as the nearest

intermolecular atom pair distance. The latter can also be complemented by the van

der Waals radii of the atoms. If the molecules are in lattice positions, the symmetry

of the unit cell will produce groups of dimers identical up to a reflection or rotation.

To filter out repeated configurations, all the intermolecular atomic distances are eval-

uated and sorted which provides a fingerprint for the dimer geometry. Equivalent



126 Chapter 5. Implementation

dimers are then defined as ones with the same fingerprint up to an RMSD threshold

of 10−4 Å by default.

The dimeric arrangement can then be characterised quantitatively. An orthonor-

mal set of principal, secondary, and tertiary axes is calculated for each constituent

fragment and the angles between same axes of two molecules can be associated to

an archetypical dimer, effectively classifying the pair.

The generalised procedure to obtain characteristic vectors for a molecule is shown

in Figure 5.5:

1. All atoms of the molecule are projected onto an averaged plane by singular

value decomposition.

2. The two longest interatomic distances are identified, forming a quadrilateral

ABCD such that AC > BD and AB is the longest side. This imposes an arbi-

trary but consistent direction for the vectors.

3. The following midpoints are detected: [AB]→H; [BC]→G; [CD]→F; [DA]→E.

The principal and secondary vectors~a and~b respectively go from E to G and F

to H.

4. The two vectors are normalised and rotated equally until they are perpendic-

ular. The tertiary vector is~c =~a×~b.

A B
CDE H
GF

A B
CDE H
GF

1. Project atoms on plane A B
CD

2. Find the largest interatomic distances

3. Generate vectors from midpoints 4. Orthogonalise

: Out of plane vector

FIGURE 5.5: Algorithm to generate principal axes from a
monomer geometry with 2-fluoronaphthalene as an example.
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This orthonormal set of axes presumes the significance of a plane which defines

the shape of the molecule. Conjugated organic systems, those with optical appli-

cations, are often planar due to their aromatic components.6 In other cases, the ju-

dicious elimination of extraneous atoms from the analysis—a feature present in the

code—can reduce the significant coordinates to a plane. To exclude a particular atom

type from the calculation, only one atom need be specified, and others with the same

identity can be automatically detected using the method outlined in section 5.3.3.

If one same atom is involved in both largest interatomic distances, the procedure

remains valid and the points C and D become degenerate. In certain cases, the prin-

cipal axis should simply be the vector connecting the largest interatomic distance.

When this option is selected, the secondary axis becomes the perpendicular axis

which lies on the averaged plane. In the general case where one wishes to extract

the geometric information from a cluster of dimers clust.xyz, one should use the

command:

fro_dimer_tools.py clust.xyz

which will return the file dimers.dat containing all of the angles between dimers,

the centroid distances and a proposed classification into different archetypical dimers.

An additional slip angle is printed, to estimate the amount of face-to-face overlap-

ping area giving rise to ππ interactions. It is defined as the smallest angle between

the centroid-to-centroid axis and either tertiary axis of the constituent monomers, as

is discussed in Ref. 174.

The above method was used to investigate (2E)-3-(dimethylamino)-1-(2-

hydroxy-4-methoxyphenyl)-2-propen-1-one (DMAH). This molecule exhibits lasing

behaviour with a fluorescence quantum yield of 0.77 in crystal form compared to

0.19 in PMMA film.97 The crystal structure was optimised in Quantum Espresso us-

ing PBE-D2 with a plane-wave cutoff of 30 Ry and a 8x6x6 k-point mesh. A cluster

of molecules was extracted from its crystal positions and all dimers with centroids

falling less than 10 Å from each other were considered. In this case, certain nonessen-

tial atoms were ignored in the geometric analysis and the points B and C became

degenerate. The results are represented on Figure 5.6. The points at (44°,115°) and
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FIGURE 5.6: Case study of DMAH for dimer geometry analy-
sis a) Chemical structure b) Crystalline cluster c) Principal axes
determination d) Heatmap of the angles between primary and

secondary axes, respectively α and β.

(136°,65°) have a large β which is characteristic of the edge-to-face dimers in herring-

bone packing. However the α values are unusually far from 0° or 180°, showing a

packing arrangement specific to this crystal. The point at (0°,0°), is in this case only

related to the dimers which monomers form with periodic images of themselves.

5.3.2 Exciton Analysis

Exciton Classification

The exciton model is a framework to characterise different types of many-body elec-

tronic excitations in collections of molecules. The excitation can be associated with

a localised Frenkel exciton, or a charge-transfer state, which are characterised by the

electron density respectively migrating intra- and intermolecularly. A delocalised

Frenkel excitation corresponds to an electron density reorganisation throughout the

dimer with no net charge transfer. Differentiating between these three behaviours is

crucial for the design of organic semiconductors in solar cells, since the process of

charge separation and migration is fundamental to their mechanism. One approach

is that of analysing the one-electron transition density matrices associated with the
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excitation, which contains information about the migration of the charge during the

process.182 This method is implemented in TheoDORE.183

Refs. 184 and 185 propose a different scheme to qualify the nature of the exciton

by comparing the charge density distribution on fragments of a dimer before and

after excitation. The original implementation is in a program named CALCDEN which

combines Perl and Fortran. The reimplementation in fromage is Python importable,

making it an attractive alternative for use and extension depending on the user’s

preference.

A Mulliken partition scheme can supply integrated orbital-specific density coef-

ficients located on one molecule (A):

ρk
A = ∑

µ∈A,ν∈A
cµkcνkSµν + ∑

µ∈A,ν∈B
cµkcνkSµν (5.1)

Sµν is the overlap integral between basis functions φµ and φν, and cµk is the coef-

ficient of basis function φµ in molecular orbital k. This density coefficient, ρk
A, can be

used to produce two indices related to an excitation I:

ΣPI
A = ∑

i→j
σij(CI

i→j)
2(ρ

j
A + ρi

A)

∆PI
A = ∑

i→j
σij(CI

i→j)
2(ρ

j
A − ρi

A)

(5.2)

Where CI
i→j is the TDDFT coefficient corresponding to the excitation from orbital

i to j and σij is 1 for i < j and −1 for i > j, in the case of de-excitation. These indices

are in units of e− and since they are associated to one excited state only, they have

bounds 0 ≤ ΣPI
A ≤ 2 and −1 ≤ ∆PI

A ≤ 1. ΣPI
A represents the amount of electrons

changing populations of atomic orbitals within A for a given excitation. ∆PI
A, on

the other hand, represents the electrons from A populating atomic orbitals of B ipon

excitation, or vice versa.

The combination of the two quantities indicates the behaviour of the electronic

density upon excitation; a large reorganisation of density confined to molecule A

(labelled LOC(A)) would manifest in an extreme ΣPI
A, closer to 0 e− for molecule B

and closer to 2 e− for molecule A. On the other hand, extreme ∆PI
A values indicate
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a net loss or gain of density by one molecule. Values closer to -1 e− correspond to a

charge transfer from A to B (CT(A→B)) and vice versa for values close to 1 e−. If none

of the indices have extreme values, the excitation is delocalised, labelled DELOC. In

fromage, an arbitrary threshold is in place by default where an excitation less than

0.5 e− from an extreme value is classified as the corresponding type of exciton.

This method inherits the limitations of Mulliken population analysis, and basis

set superposition, but has the advantage of only relying on TDDFT coefficients and

overlap matrices, making it much faster than methods which investigate the spatial

features of the density difference between excited and ground state.

A B

S3 3.73 eV

S4 4.06 eV

S1 3.11 eV

DELOC

CT(B→A)

LOC(A)

FIGURE 5.7: Transition density of two excited states of a pery-
lene dimer taken from its crystal structure. The excited state
energies are reported with respected to S0. The electron density
migrates from the blue to the yellow areas upon excitation. The
exciton classification indices are defined in equation 5.2 and are

in units of e−.

To evaluate the two indices and classify an excitation, the user should first per-

form a TDDFT or CIS calculation of the dimer. Currently, only Gaussian calcula-

tions are supported. They should ensure that the atoms of molecule A appear before

those of B in the geometry field and that an rwf file is produced by using the op-

tion %rwf=[name].rwf. Then, given the output files tddft.log and tddft.rwf, the

command line:
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fro_exciton_classification.py tddft.log tddft.rwf [number of excitation]

will print out the values of ΣPI
A and ∆PI

A along with a suggested classification

(DELOC, LOC(A), LOC(B), CT(B→A) and CT(A→B)).

To illustrate the use of this feature, a dimer of perylene was extracted from its

experimental crystal structure.186 Its excited states were calculated in Gaussian16

using TD-ωB97X-D/6-31G(d), and the transition densities analysed using the orbital

specific Mulliken partition scheme. The states S3 and S4 each had extreme values of

the classification indices, with ΣP3
A = 0.95 e− and ∆P3

A = 0.90 e− for the former,

indicating a charge transfer from fragment B to a, and ΣP4
A = 1.88 e− and ∆P4

A =

0.07 e− for the latter, corresponding to a transition confined to monomer A. Figure

5.7 corroborates this classification by showing the electronic transition density of a

DELOC S1 and comparing it to the CT(B→A) S3 and LOC(A) S4.

Exciton Coupling Evaluation

The coupling associated with an exciton is a measure of the correlation between

the individual isolated excitations within the exciton. Evaluating it can give us a

quantitative bearing on the importance of the many-body effects in the excited state

process.

Kasha’s exciton model is the initial approach, reducing the electronic densities of

the fragments to point dipoles and comparing their relative geometry.107 Under the

point dipole approximation (PDA), the exciton coupling between fragments i and j

is expressed as:

JKasha
ij =

µiµj

R3 −
3(µi · Rij)(Rij · µj)

R5 (5.3)

Where µn is the electronic transition dipole moment for monomer n and Rij is the

vector connecting the centroids of monomers i and j.

For a better spatial resolution of the electrostatic interactions, one can instead

calculate the interaction between atomic transition charges (ATC)166:

JATC
ij =

Ni

∑
a

Mj

∑
b

qaqb

|Ri
a − Rj

b|
(5.4)
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Where Rk
c is the position of atom c of monomer k with ATC qc and Nk is the number

of atoms of monomer k.

For more resolution, the transition electronic density itself can be used, yielding

costly but exact Coulombic exciton coupling. Additional correction can be included,

for example by including the dielectric response of the environment as a polarisable

continuum model as is done in EXAT.106

These models are purely Coulombic in nature and do not take into account the

short-range interaction affecting the excited state behaviour of adjacent molecules,

which for example is dominant in charge-transfer states.

Aragó and Troisi have devised a procedure which evaluates the coupling Jij in a

dimer by diabatising the Hamiltonian:105

1. Select an excited state property. For the sake of argument we will use the tran-

sition dipole moment (TDM) µ but anything bearing relation to the excited

electronic density would be applicable.

2. Evaluate the property for the two lowest excited states, along with the ener-

gies, for the dimer. These are the adiabatic energies (EA
1 and EA

2 ) and adiabatic

TDMs (µA
1 and µA

2 ).

3. Evaluate the property for both isolated constituent monomers in the first ex-

cited state, retaining their orientation. These TDMs are labelled µISO
1 and µISO

2 .

4. Calculate the singular value decomposition (µA)∗µISO = UΣV∗.

5. Compute the matrix C = (UV∗)∗ which is the best unitary transformation

matrix mapping the adiabatic to the diabatic basis.

6. Compute the diabatic Hamiltonian:ED
i Jij

Jji ED
j

 =

C11 C12

C21 C22

EA
i 0

0 EA
j

C11 C12

C21 C22


The off-diagonal elements of the Hamiltonian the exciton coupling values Jij.

More details can be found in reference 105. The diabatisation method has already

been employed in fromage to investigate the aggregate behaviour of propeller-

shaped emitters.173
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We have further extended it to calculate N-dimensional diabatic Hamiltonians,

thus, for example, allowing for the calculation of pairwise exciton coupling within a

trimer in the excited state, taking into account the influence of the third monomer.

An additional approximate method is that of exploiting the exciton energy split-

ting of the molecular excited state upon formation of a dimer. In the dimer, the S1

and S2 states are separated by twice the magnitude of the exciton coupling, provided

that the individual constituent molecules are in perfect resonance.187 Even in less

symmetric cases, this approximation has been used with reasonable success.133,174,188

fromage implements this half-gap method, the PDA Kasha model, the ATC

Coulombic interaction model and the diabatisation scheme using either ATCs or

TDMs as excited state properties.

The script fro_coupling.py manipulates Gaussian log files to compute exciton

couplings. Several schemes are implemented. For instance, if a user requires the di-

abatisation method using the TDM excited state property to find the diabatic Hamil-

tonian containing the first three couplings of a trimer, the steps would be as follows.

Carry out Gaussian calculations of the S1 states of the three constituent monomers

and the first three excited states of the trimer, yielding the files mon_1.log mon_2.log

mon_3.log and trim.log. Then, use the command line:

fro_coupling.py -m DIA -p TDM -mf mon_1.log mon_2.log mon_3.log -nf trim.log -ns 3

This will print out the diabatic Hamiltonian where the three lower triangular

off-diagonal elements correspond to the three exciton couplings of the trimer.

As an illustrative example, the crystal structure of 1,4-bis-(4-styryl-styryl)-

benzene (4PV) was used to extract inequivalent dimers and evaluate their couplings.

The structure of 4PV has been experimentally shown to contain six monomers, de-

parting from the high symmetry of an ideal herringbone crystal due to variable slight

rotation of the extreme phenyl rings.189 First, the unit cell was optimised using PBE-

D2 with a basis set cut-off of 50 Ry and a Monkhorst-Pack grid of 1x2x1 k-points

as implemented in Quantum Espresso.152 Then, the inequivalent dimers were de-

tected by fromage using a centroid-centroid distance threshold of 7 Å. The TDMs

of these dimers were calculated using TD-ωB97X-D/6-31G(d) in Gaussian16139 and

processed in fromage in order to evaluate exciton couplings using dimer and trimer
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diabatic Hamiltonians. The results are shown in Figure 5.8. In this system, edge-to-

face dimer arrangements have larger exciton couplings (97, 103 and 105 meV) than

face-to-face ones (79 and 91 meV). The largest difference is of 26 meV which repre-

sents 25% of the greatest coupling (105 meV). It is expected that in cofacial dimers

with couplings of such magnitude, the short-range interactions should account for

most of the coupling, making the use of a coupling scheme which accounts for ex-

change imperative.91

Overall, the inclusion of the third molecule in the trimer diabatic Hamiltonian

reduces the magnitude of the couplings by about 10 meV which is significant since it

is in the order of the difference between certain edge-to-face and face-to-face values.

The irregularities in the herringbone packing produce two different face-to-face

dimers with respective centroid-centroid distances of 6.05 Å and 6.15 Å. This rela-

tively small increase in distance reduces the exciton coupling by 12 meV (14% of the

average value), indicating that the natural packing of 4PV produces in dimers in an

excitonically sensitive geometry.

3

a)

b) c)

79

91(81)

105(97)

97(88)

103

FIGURE 5.8: a) Chemical structure of 4PV b) Top view of a clus-
ter of 4PV molecules taken from their crystal positions c) Side
view of the cluster with inequivalent dimers labelled by their
exciton coupling value in meV. The values in parentheses are

calculated as a trimer.
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5.3.3 ONIOM Calculations

Whether it be to calculate an absorption or emission energy, locate nonradiative

pathways, or build a potential energy surface, calculating an excited state electronic

structure is an often unavoidable step in the study of molecular aggregates. This

often proves to be challenging due to the environmental effects in such media.

As discussed in Chapter 2, hybrid method schemes can offer environmental cor-

rections, where an active site calculated with a high accuracy method is embedded

in an explicit environment of lower accuracy. Inter-program hybrid method codes

are not uncommon. GARLEEK190 communicates between Gaussian and Tinker for

subtractive QM:MM calculations. Chemshell118,171 provides additive QM:MM for-

mulations. The Atomic Simulation Environment (ASE)169 offers both additive and

subtractive QM:MM as a Python library. However to our knowledge no such code

yet offers inter-program ONIOM QM:QM’ calculations in the excited state. fromage

uses its interfaces with DFTB+, Gaussian, Molcas, and Turbomole to calculate ener-

gies and geometry optimisations of different kinds with ONIOM QM:QM’. Namely

mechanical embedding, regular electrostatic embedding, Ewald point charge em-

bedding, and self-consistent versions of the last two.

The point charges can originate from Mulliken or RESP calculations. To

fit point charges to the Ewald potential, we use the Ewald program.63,113,114 It

was modified to allow for the use of noninteger charges and redistributed at

https://github.com/Crespo-Otero-group/Ewald with permission from the original

authors, fulfilling the requirements of the Computer Physics Communications li-

cense.

The various quantum methods available and tested in fromage are listed in Table

5.1 along with their corresponding programs.

Setting up hybrid method calculations is typically a technically tedious task, but

as many steps as possible are automated in fromagewhile retaining the full flexibility

of the interfacing programs. The line:

fro_prep_run.py

accompanied with a few input files such as the unit cell and a configuration file,

will prepare the template files for the actual calculations to follow. This may include

https://github.com/Crespo-Otero-group/Ewald
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TABLE 5.1: Interfaced quantum methods and their availability
in electronic structure programs

Method DFTB+ Gaussian Molcas Turbomole

Hartree-Fock 7 3 7 3

DFTB 3 7 7 7

DFT 7 3 7 3

TDDFT 7 3 7 3

ADC(2) 7 7 7 3

CC2 7 7 7 3

CASSCF 7 3 3 7

CASPT2 7 7 3 7

cluster geometry generation, Ewald fitting procedures and self-consistent popula-

tion analyses.

Then, if the user is satisfied with their newly generated embedded cluster, the

line:

fro_run.py

can perform geometry optimisation or single point calculations.

OEC, OEEC and SC-OEEC calculations all require the distribution of point

charges from single molecule population analyses to aggregate geometries or unit

cell structures. This is a routine operation for preparing forcefield calculations,

where sets of atomic types are associated to a potential or another with predeter-

mined charge values.191,192 The atomic type is usually dependent on its neighbour-

ing bonded atoms and the bond types. For QM:QM’ calculations, it would be more

attractive to use a broader definition of the atomic type which distinguishes between

same function atoms at nonequivalent parts of the molecule.

To this end, fromage implements a connectivity detection tool which reads pop-

ulation analysis information from a single molecule or unit cell calculation and re-

distributes it onto any other finite or periodic ensemble of same molecules. The

procedure builds a bond order matrix B where Bij is the shortest path connecting

atoms i to j in number of bonds. The construction of the matrix is represented in

Figure 5.9 and is performed as follows:

1. Detect the first connections by computing all of the interatomic distances com-

plemented by atomic radii.
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2. Check every zero element and detect atom pairs (a, b) which have a connected

atom c in common, i.e. Bac 6= 0∧ Bbc 6= 0.

3. Assign Bab = Bac + Bbc.

4. Repeat from step 2 until convergence of the matrix.

An atom’s identity can be completely defined by additionally using the element

of the atom corresponding to each row of B. A sufficient fingerprint for a given

atom is the amount of atoms of a given element which are located a certain amount

of bonds away, accompanied by the atom’s own element. For example a methyl hy-

drogen of methanol is sufficiently defined by stating that it is a hydrogen atom with

one carbon atom one bond away, one oxygen atom two bonds away, two hydrogen

atoms two bonds away and one hydrogen atom three bonds away.

C1
O1
H1
H2
H2
H2

C1 O1 H1 H2 H2 H2

C1

O1

H2

H1

H2

H2

C1 O1 H1 H2 H2 H2 C1 O1 H1 H2 H2 H2

FIGURE 5.9: Generation of the bond order matrix for methanol.

Once all of the atomic identities are sampled from a reference molecule or unit

cell, the partial charge values from this reference are distributed onto the desired

target. When several reference atoms have the same identity (for instance three hy-

drogens belonging to the same methyl group), the average charge is retained. In

practical terms, given for instance a Mulliken population analysis of methanol cal-

culated in Gaussian with output file pop.log, and a Cartesian coordinate file of a

cluster of methanol molecules clust.xyz, the line:

fro_assign_charges.py pop.log clust.xyz

will produce a file out_char which contains the coordinates of clust.xyz with an

added column stating the partial charge of each atom.

All geometry optimisation routines use the the BFGS algorithm as implemented

in scipy.176 To locate minima on the PES, the ONIOM energy expression (Equation
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2.9) is minimised. To locate conical intersections, the penalty function of Levine,

Coe, and Martínez is used instead (see Section 4.2).143

Example of Use

The optimisation of excited state geometries in detailed condensed phase en-

vironments has numerous applications. For instance, the fluorescence of HC1

(see section 5.3.1) can also be switched off by the substitution of a methyl

group in para position with respect to the hydroxyl group, resulting in another

dark compound: (2E)-3-[4-(Dimethylamino)phenyl]-1-(2-hydroxy-5-methylphenyl)-

2-propen-1-one (DMAP).134,158

Both HC1 and DMAP can experience excited state intramolecular proton trans-

fer, splitting the excited state into two potential decay pathways. It was recently

computationally shown that in HC, both the enol and the keto non-radiative decay

pathways were rendered energetically inaccessible by a combination of molecular

and crystalline factors.131,132

OEEC was employed to investigate the critical points in the potential energy

surface of DMAP. A thorough tutorial on how to perform these calculations is avail-

able here: https://fromage.readthedocs.io/en/latest/tutorial.html. Geometry opti-

misations were carried out to locate the ground and excited state minima, as well

as its Minimal Energy Conical Intersection Geometries (MECI). The crystal struc-

ture was optimised in Quantum Espresso using PBE-D2, a 40 Ry basis cutoff and a

1x2x1 k-point mesh. For the ONIOM calculation, the QM level of theory was TD-

ωB97X-D/6-311++G(d,p) while for the QM’ level of theory, both HF/STO-3G and

DFTB were employed. The energies and gradients were computed in Gaussian16

for TDDFT and HF and in DFTB+ for DFTB. Figure 5.10 shows the relative energies

of all the optimised critical points of the PES.

The enol non-radiative decay pathway is significantly above the absorption en-

ergy, rendering this channel inaccessible. On the other hand, the keto conical inter-

section is only about 0.2 eV above the absorption energy, arguably making it acces-

sible via thermal fluctuations. The availability of this nonradiative decay channel

explains the low fluorescence quantum yield.

https://fromage.readthedocs.io/en/latest/tutorial.html
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FIGURE 5.10: Relative energies of critical geometries of
DMAP evaluated with OEEC at critical points of the PES. The
Franck–Condon point (FC), Enol (E*) and Keto (K*) excited
state minima and Conical Intersection (CI) geometries were lo-

cated.

The TDDFT:HF and TDDFT:DFTB levels of theory have similar results, both in

geometry and energy, with a difference of less than 0.1 eV at each point except form

the enol MECI. This outlier can be attributed to the extreme bond stretching occur-

ring between carbons in the back bond in the enol MECI conformation which would

render both the Hartree-Fock formalism and the parameterisation of the DFTB cal-

culations inadequate in differing ways. The striking agreement between the two

methods is encouraging, given the relatively low computational cost of the semiem-

pirical computation and the prevalence of HF as a ground state theory in QM:QM’

protocols.13–16

5.4 Conclusion

We have detailed the principal capabilities of the Python library fromage, which

aims to facilitate the computational investigation of the excited states of molecular

aggregates. They include geometrical and exciton analysis as well as QM:QM’ ge-

ometry optimisation tools, which have already been successfully employed in three

past publications.61,173,174 The features were tested on a diverse array of molecules,
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in order to challenge their robustness. They are implemented with enough flexibil-

ity that Python literate researchers can employ fromage scripts as part of a larger

workflow with little added effort. By virtue of being an open source, unit tested and

documented piece of software, fromage represents an addition to the fast expanding

pool of sustainable chemical software libraries. We hope that by enabling researchers

to use the framework and manipulate the source code, the field of aggregate photo-

chemistry will continue to mature towards modern reproducible workflows.
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Chapter 6

Application

6.1 Introduction

With the new suite of tools implemented in fromage, we now focus on applying them

to increasingly diverse systems, in the hope to glean some chemical insight. The ob-

jective is both to provide robustness to the program, whilst studying the properties

of emissive organic molecular crystals .

To fully control the luminescent behaviour of these materials, the excited state

radiative and non-radiative decay channels of the molecule need to be understood

within a particular condensed phase environment. Despite the abundance in ex-

perimental and theoretical investigations of the excited states of molecular crystals,

understanding these decay channels is still extremely challenging, and is done on

a case-by-case basis for newly discovered compounds. The main obstacle to gen-

eralising design rules for these materials is the interconnectedness of their defining

properties at the molecular and intermolecular levels.

In this chapter, we analyse the role of different factors affecting the emissive re-

sponse of thirteen luminescent molecular crystals, which have previously been char-

acterised experimentally (Figure 6.1). We aim to consider a large enough variety of

systems that comparisons can be drawn between crystals with different degrees of

packing and chemical similarity. Our main focus is to rationalise the Quantum Effi-

ciency of Fluorescence (QEF) of these materials as a competition between radiative

and nonradiative decay channels, arising from different inter- and intramolecular

factors. We consider a diverse enough range of materials to highlight how differ-

ently behaving solute molecules can arrive at the same desirable emissive property
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in the crystal phase.

The crystals were gathered into series based on their backbone structures

and substituents. p-oligophenylenes (nP, n=3, 4, and 6) are a family of organic

π−conjugated molecules composed of phenyl-rings attached to each other via sin-

gle bonds in para-positions. The DCS series where three phenylene units are con-

nected by vinylene bridges with cyano-group substituents, and additional buthoxy

and methoxy groups are added to the backbone. We also consider the DSB molecule,

which shares the same backbone but has no substituents and 4PV which further ex-

tends the phenylene chain by two phenylene units. Additionally, we consider 2-

(2’-hydroxyphenyl)benzothiazole (HBT), a molecule exhibiting excited state proton

transfer in the solid state. All molecules are represented on Figure 4.1.

Barring certain substitutions of the DCS family and HBT, all systems display

amplified spontaneous emission (ASE) in crystal, making them candidates for use

as organic single crystal lasers, as detailed in Reference 6. All molecules undergo

Solid State Luminescence (SSL),133 some of it induced by crystallisation—Solid State

Luminescence Enhancement (SLE).

We first present the computational details of our findings. Then, in order to un-

derstand the emissive behaviour of the crystals, we analyse the geometric features of

the crystal packing, the excitonic coupling between constituent dimers, and the en-

ergetics of the excited states along critical points of their potential energy surfaces.

We conclude by comparing the findings between series and assessing the efficacy of

our available analysis methods in elucidating competing radiative and nonradiative

mechanisms.

6.2 Computational Details

The crystal structure geometries were optimised using PBE-D2 as implemented in

Quantum Espresso152, with a basis set cut-off of 50 Ry and various Monkhorst-Pack

Grids chosen in accordance with the unit cell shapes.

The investigation of the multiple molecules was facilitated by the recent devel-

opment of fromage, a Python library dedicated to studying excited state molecular
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FIGURE 6.1: Molecular structures of the studied systems.
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aggregates and crystals. This work showcases the robustness of its features by ap-

plying geometry analysis tools, excitonic coupling evaluation, and ONIOM methods

to the crystals.

In order to isolate dimers from the lattice, a spherical molecular cluster was ex-

tracted from the crystal, and its pairs of molecules with with intermolecular contacts

smaller than 4 Å were selected. Then, the intermolecular atomic distances of each

dimer were evaluated and sorted so as to provide a fingerprint for the dimer config-

uration. These distances were finally compared between dimers and if their RMSD

fell below 10−4 Å, the dimers were considered identical and only one was preserved.

To characterise the configurations of the unique dimers, an orthonormal pair of

principal and secondary axes was calculated for each constituent fragment, and the

angles between same axes of two molecules was evaluated. To obtain the vectors,

first, all atoms of the molecule were projected onto an averaged plane via singu-

lar value decomposition. The principal axis was defined as the vector tracing the

longest interatomic distance and the secondary axis its perpendicular vector on the

averaged plane.193 This process is represented for a dimer of the 3P crystal in Figure

6.2.

All molecules have rotational symmetry about both of the axes when defined this

way apart from HBT which has an inherent orientation. In the case of this molecule,

we employed the scheme described in Section 5.3.1 where, by exploiting the two

longest interatomic distances on the averaged plane, a set of axes could be defined

with consistent orientation.

To evaluate exciton couplings between dimers, the diabatisation scheme by Troisi

and Aragó105, as implemented in fromage. The transition dipole moments of the

isolated monomers were compared to those in the dimer to construct a diabatic

Hamiltonian, whose off-diagonal elements are the exciton couplings. The original

algorithm is thoroughly described in the Supporting Information of Reference 105

and in reference 193. The transition dipole moments were calculated in Gaussian139

using TD-ωB97X-D/6-31G(d).

For QM:QM’ calculations, the ONIOM scheme was used, using electrostatic em-

bedding. The excited state level of theory was TDDFT ωB97X-D/6-31G(d), with
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FIGURE 6.2: a) Principal and secondary axes on the 3P
monomer b) Top view of a 3P dimer c) Side view of the same

dimer.

Gaussian, or ADC(2)/SV(P), with Turbomole141. The high level region was embed-

ded in point charges from RESP calculations of DFT ωB97X-D/6-31G(d) calculated

in Gaussian. For the polar molecules HBT and α-DCS, the electrostatic embedding

was extended to include long range Coulomb interactions using the ONIOM Ewald

Embedded Cluster method (OEEC).61 The ground state level of theory was DFTB,

with DFTB+142, and the embedding for the central region was done using RESP cal-

culations with PBE/6-31G(d) calculated in Gaussian. Multireference SA-2-CASSCF

and MS-2-CASPT2 calculations were performed with Molcas.140 The active spaces

are reported in the Supplementary Information.

To sample the exciton coupling of in the dimeric vibrational space of the crystal,

the QM:QM’ calculations were carried out on dimers to find their FC point. Then,

a normal modes calculation was carried out, from which a Wigner distribution of

200 sample geometries were extracted using Newton-X.145,184 The exciton couplings

were then evaluated using the diabatisation method.

The Huang-Rhys factors (Si) for relaxation within the S1 state, between S0 and

S1 minima, were evaluated for the members of nP and DCS series in vacuum and
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crystal environment using the DUSHIN code.194 The computations were based on

normal modes computed at the optimised S0 and S1 geometries in vacuum at the

(TD-)ωB97XD/6-31G(d) level and in crystal at the QM:QM’ level described above.

Reorganisation energies (λi) decomposed into normal mode contributions are re-

lated to Huang-Rhys factors as follows:

λi = h̄ωiSi (6.1)

The Einstein184 and Strickler-Berg195 (SB) relations were employed to evaluate

radiative rates and lifetimes of selected fluorophores in solution and crystal. Einstein

equation for spontaneous decay relates fluorescence rate (kr) with emission energy

(∆E) and oscillator strength ( f ).

kr =
2∆E f

c3 (6.2)

The SB relation takes into account transitions between vibronic wave functions

of excited and ground states195. According to the SB relation, the radiative rate can

be evaluated as133

kr = 0.667[cm2 × s−1]
ν3

F
νA

n2 f (6.3)

Where νF and νA are vertical emission and absorption energies (in cm−1), f is the

oscillator strength, and n is the refractive index of a solvent.

To evaluate exciton hopping rates, the Marcus scheme was employed:

νij =
J2
ij

h̄

√
π

λkBT
exp

[
− λ

4kBT

]
(6.4)

Where Jij is the exciton coupling between excited monomers, h̄ is the reduced

Planck’s constant, kB is Planck’s constant, λ is the reorganisation energy computed

as described above, and T is room temperature of 298 K.196,197
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Herringbone Sheet

FIGURE 6.3: Illustration of two archetypal packing motifs in
molecular crystals.

6.3 Results

6.3.1 Dimeric Arrangement

Due to the non-covalent nature of molecular crystals, photophenomena often occur

locally105 and can be understood on the scale of the nearest neighbour molecules. In

particular, the conformational features of the dimer arrangements resulting from the

packing of the crystal can elucidate the pairwise interactions affecting the excited

states in the crystal.

The packing motifs of these materials are diverse and smoothly varying, mak-

ing them challenging to classify. However certain patterns have been identified to

occur frequently, and we use these as reference points.198,199 In particular, herring-

bone crystals pack in an alternating edge-to-face arrangement, while sheet crystals

have all molecules sharing the same orientation arranged in regular layers. These

two motifs are represented in Figure 6.3. For the sake of clarity, in this chapter, we

employ the terms like herringbone and sheet to refer to the overall crystal packing,

and ones like edge-to-face or face-to-face to denote specific dimer arrangements.

Table 6.1 summarises the principal data relating to the packing and emission of

all systems. We immediately note the prevalence of H dimers arising from the her-

ringbone and sheet packing patterns, which result in significant QEF values, con-

tradicting Kasha’s exciton model.107 The intermolecular processes in these materials

therefore must go beyond point-dipole approximations.

The significant dimers of the crystals in consideration were processed in fromage

to extract their characteristic angles. The overall crystal packing was found to be

split between the series of molecules. The DCS series primarily forms sheets, while

the other crystals have a clear bias towards herringbone motifs. The principal axis
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FIGURE 6.4: Distribution of the dimeric arrangements in the
DCS series (14 dimers) and the rest of the crystals (14 dimers).
The angle between principal axes is plotted against the angle of
the secondary axes. Almost all DCS series dimers are perfectly

parallel, the exceptions are shown.

angles in face-to-face dimers of sheet crystals are almost always 0° due to the trans-

lational symmetry between layers. In contrast, herringbone crystals usually have

nearly parallel principal axes and a large array of secondary axis angles. Indeed

the tilt between herringbone layers is strongly dependent on the morphology of the

constituent fragments.

The angle values for non-DCS series crystals are represented as a density map

in Figure 6.4. The herringbone and sheet families of crystals can be spotted by their

characteristic densities centred around (0°,0°) and (60°,15°) respectively. Herring-

bone crystals also contribute to the density at (0°,0°), given that they are made up

not only of edge-to-face dimers but also of face-to-face ones. Furthermore, there

is more configurational variety in edge-to-face dimers, as evidenced by the wide

spread of beta angles. The island of dimers of α angles larger than 10° is due only to

one 4PV dimer and two HBT dimers. This slight departure from ideal herringbone

packing is known in 4PV189, where the unit cell includes six molecules instead of

two. HBT displays slightly misaligned head-to-tail dimers indicating that each layer

of the material in the principal axis direction has an alternating orientation.

The DCS series dimers are represented as a points on the same plot. All of the

points were found at the (0°,0°) position, except for four outliers. DSB has a dimer



6.3. Results 149

at (1.2°,58.9°), which is near the centre of the dense shaded area. This confirms the

nature of DSB as a herringbone crystal, which becomes a sheet crystal only follow-

ing substitutions. α-DCS and β-DBDCS have dimers at (1.3°,24.9°) and (2.3°,13.5°)

respectively, which break the translational symmetry due to the freedom of rotation

of their central aromatic ring. α-MODCS has a point at (38.5°,10.3°), which is far

away from any other considered dimer. The packing of this crystal does not match

any of the common packing classifications.

6.3.2 Exciton Coupling

The values of the exciton couplings of the molecules under scrutiny, evaluated at

their Frank-Condon region, are a result of structural and chemical features of the

dimers formed upon aggregation. We therefore wish to highlight any possible corre-

lations between the packing patterns described above, and the exciton states within

the crystal. These states are liable to cause delocalised excitation phenomena, dis-

couraging emission.

We first examine the dependence of the couplings on the distance between con-

stituent fragments of the dimer. Figure 6.5 shows the exciton coupling of each dimer

of the crystal structures with respect to the centroid-to-centroid distance of said

dimer. We observe a clear monotonic downward trend for dimers belonging to every

crystal except for HBT. This trend is in line with the limiting behaviour where frag-

ments become non interacting at infinite distances and the coupling should therefore

tend to zero. In the middle to long range, the electrostatic interaction between the

two fragments approaches a 1/r shape where r is the distance between the centres

of mass of each electron could. Figure 6.5 does not have the sufficient resolution

to suggest an inverse law as opposed to other monotonically decreasing functions.

However, we can observe that dimers from different series have similar exciton cou-

pling given similar centroid-to-centroid distance within a range of 50 meV. This is

a surprising result because of the inadequacy of centroid distance as a measure of

correlation of neighbouring excited states, ignoring the shape of the molecular wave-

functions altogether.

HBT constitutes a striking exception, where all of the nearest neighbour dimers
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FIGURE 6.5: (top) Exciton coupling (J) as a function of the
centroid-to-centroid distance of the constituent monomers of
each dimer. The values of every dimer are fitted to an inverse
law f (r) = a/r via least squares. The resulting function, with
a = 459 is plotted in pink and has a standard deviation of 27,
represented by the shaded area. A dashed line represents the
same fit but using an aromatic carbon (bottom) as a reference
for the distance calculation, denoted HBT*. In this case, a = 480

and the standard deviation is 23.

have exciton coupling values between 20 and 40 meV. In particular, the two clos-

est dimers, with centroid distances close to 5 Å, are about 60 meV below the fit

line. The transition densities of these dimers, compared with the monomer transi-

tion density are depicted in Figure 6.6. The excitation of the isolated molecule is

mainly localised in the proton transfer moiety, breaking the apparent symmetry of

the two constituent rings. Both closest dimer arrangements are aligned in centroid

but opposite oriented, effectively distancing the excitation densities. This effect is

less pronounced in other molecules because they are all symmetric in orientation of

their long axis. By measuring the distance between HBT molecules with an aromatic

carbon as a reference point, the exciton coupling values adopt a clearer downward

trend, albeit shifted lower than for the other series.

Excluding HBT, the dimers are roughly split into two group, those below 7 Å in

separation, with couplings ranging from 82 to 140 meV and those above 7 Å with

couplings from 24 to 64 meV. Those in the former group are overall above the a/r

trend line, and those of the latter below. This may be explained by the added propor-

tion of exciton coupling resulting from exchange in the strong coupling regime. Ref.
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FIGURE 6.6: Transition densities of the bright states of HBT in
monomer form and both dimers of least centroid-to-centroid
distance. Upon excitation, the density is reorganised from the

blue to the orange areas.
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FIGURE 6.7: Exciton coupling values of irregularly packed DSB
dimers, sampled from their vibrational phase space.

91 found that when Coulombic coupling exceeds 70 meV in organic semiconduc-

tor materials and light-harvesting complexes, the exchange portion of the coupling

always shares a sign with its electrostatic counterpart, thus increasing the total cou-

pling. This is consistent with the deviation of the limiting behaviour of the total

coupling from a Coulombic inverse law.

Moreover, we observe a clear linear dependence of the exciton coupling on the

dimeric S2–S1 gap, depicted in Figure 6.8. This can be understood by definition,

in the limit of linear resonant molecules.166 The S2 and S1 states of the dimer are

composed of superpositions of equal and symmetric S1 adiabatic monomer states,

and the splitting is only due to the exciton coupling. The remarkable agreement

with the fit line implies a strong degree symmetry of the two constituent molecular

wavefunctions, characteristic of the herringbone and sheet packing characterised in
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Crystal Series Vi J (meV)a Packingb H dimer %c Calculated absorption
Exp. absorption Φ fMonomer Dimer S1 Dimer S2

DSB - 1.41 131 HB 100 3.60 3.47 3.65 3.48d 133 0.78
4PV - 1.42 103 HB 100 3.10 2.98 3.19 - -
HBT - 1.43 36 HB 83 3.98 3.94 4.00 3.65e 200 0.77g 201

3P nP 1.37 98 HB 100 4.36 4.24 4.43 4.51d 202 0.67203

4P nP 1.39 99 HB 100 4.16 4.05 4.23 4.13d 202 -
6P nP 2.27 95 HB 100 3.75 3.63 3.82 - 0.30h 204

α-DCS DCS 1.41 97 S 100 3.74 3.60 3.80 3.61 f 133 0.90
α-DBDCS DCS 1.49 53 S 100 3.33 3.19 3.30 3.34 f 133 0.62
β-DBDCS DCS 1.53 113 S 100 3.30 3.17 3.34 3.19 f 133 0.84
α-MODCS DCS 1.42 32 - 50 3.66 3.64 3.69 3.45e 133 0.66
β-MODCS DCS 1.39 140 S 100 3.06 2.86 3.13 2.95 3.60 f 133 0.73
α-MODBDCS DCS 1.44 103 S 100 3.27 3.22 3.29 3.43 3.84 f 133 0.42
β-MODBDCS DCS 1.43 121 S 100 2.80 2.68 2.84 2.87 3.40 f 133 0.46

TABLE 6.1: Photoactive molecular crystals considered. Φ f : flu-
orescence quantum yield in crystal, Vi: steric volume index. a

Largest dimeric exciton coupling in the crystal, b Herringbone
(HB), Sheet (S) or other (-), c fraction of H (not J) dimers in the
crystal, d tetrahydro-2-metehylfuran solvent, e cyclohexane sol-

vent, f chloroform solvent, g powder, h film.

0 20 40 60 80 100 120 140
Half S2-S1 Gap (meV)

0

20

40

60

80

100

120

140

Ex
cit

on
 C

ou
pl

in
g 

(m
eV

)

Series
DSB
4PV
HBT
nP
DCS

FIGURE 6.8: Exciton coupling as a function of half of the S2–S1
energy gap. The linear trend line, obtained via least squares, is

f (x) = 0.997x

the previous section.

We would also like to probe for any link between the geometric dimer ar-

rangements and exciton coupling values. We sample the vibrational phase space

of four dimers of the DCS series: two close to sheet-like packing crystals (α-DCS

and β-DBDCS), one perfect sheet crystal (β-MODCS) and the unclassified outlier

α-MODCS. The results are shown in Figure 6.7.

We can observe a grouping of vibrational ground state exciton coupling values

of 94, 107, and 109 meV for the face-to-face dimers (respectively α-DCS, β-DBDCS,
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and β-MODCS), well away from the value of 24 meV for α-MODCS. When com-

pared with the corresponding centroid-to-centroid distances—4.95, 4.64, 4.91, and

8.78 Å—we observe the correlation with interatomic distance mentioned previously.

β-DBDCS shares a similar interatomic distance than α-DCS and β-MODCS, despite

its additional buthoxy chains which lengthen the backbone. We can therefore link

crystals of this series with similar packing motifs, to a similar interatomic distance,

and a similar Franck-Condon geometry exciton coupling.

The broadness of the peaks offers an insight on how the dimers’ thermal motions

can influence their exciton couplings. From narrowest to broadest, the standard de-

viations are 11 meV for β-DBDCS, 27 meV for β-MODCS, 35 meV for α-MODCS,

and 51 meV for α-DCS. α-MODCS and β-MODCS are the two systems with closest

molecular structure, and also the most similar standard deviation in exciton cou-

pling values, despite their radical packing difference. β-DBDCS has a spread of

about a third that of β-MODCS, and a fifth that of α-DCS despite them all display-

ing sheet-like packing. To summarise, in these systems, since exciton coupling is a

many-body property, its value at fixed geometry depends on intermolecular struc-

ture properties. However the thermal fluctuation in exciton coupling depends on

the vibrational phase space of the crystal dimers, which in this case is determined

predominantly by molecular structural factors, not the dimer arrangement. Crystal-

scale vibrations are not probed by this model, and we cannot comment on the im-

portance of exciton-phonon effects.

6.3.3 Excited-state Relaxation by Series

Whilst geometrical considerations are easily transferable from series to series, their

nonradiative decay mechanisms are usually considered to be highly system-specific

since they are directly dependent on the molecular conformations available to the

molecule in question. In this section, we illustrate this point by investigating the

excited-state decay processes of chemically diverse molecules.

HBT

2-(2’-hydroxyphenyl)-benzothiazole (HBT) displays SLE upon its aggregation to

herringbone single crystal205 and liquid crystal phases.206 While HBT has low QEF

in organic solvents;201,207 in the aggregate phase (THF/water solution, 1:9, v/v)
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and in powder, the yields are 0.09 and 0.77, respectively.201 For this reason, HBT-

derivatives are proposed as materials for organic light-emitting diodes (OLEDs) and

fluorescent probes.

The underlying excited state relaxation mechanism of HBT-based systems

includes excited state intramolecular proton transfer (ESIPT) in vacuum, solu-

tion,208,209 and crystal210,211. In vacuum and solution, the process is known to be

a four-step photophysical cycle enabled by an intramolecular hydrogen-bonding. It

consists of a photon absorption, excited-state proton transfer, torsional motion, and

the ground-state proton back-transfer208,211. The process is characterised by large

reorganisation energies dependent on the nature of the solvent.208,211

Reorganisation energy can be used to deduce the most efficient relaxation path-

ways within the excited state PES. We optimised the S0 and S1 states of keto and

enol forms of HBT in solution and in the solid state. Following the excitation to

the S1 state of the enol form, there are two possible pathways: relaxation to the S1

minimum of the enol form, and ESIPT yielding cis-keto form in the S1 state. The

reorganisation energies in the S1 state released during these processes are 0.28 eV

for the former and 0.38 eV for the latter in cyclohexane and 0.27 eV and 0.39 eV

respectively in the solid state. Thus, the ESIPT process is energetically encouraged.

Additionally, in crystal, the enol emission energy has a 0.54 eV difference with

the enol absorption energy and 0.27 eV with the keto absorption energy. In contrast,

the keto emission has differences of 1.27 eV and 0.56 eV respectively. This indicates

reabsorption is much likelier to occur with light emitted from the enol form, thus

quenching this radiative decay channel. Indeed fluorescence experiments have ob-

served emission from both the enol and keto forms in solution solution212 and only

from the latter in crystal,213 where the packing is closer and the chances for reab-

sorption greater, only from the latter.

We now attempt to rationalise the SLE mechanism of HBT via the lens of the Re-

stricted Access to Conical Intersections (RACI) model outlined by Blancafort et al. in

References 214 and 135. This framework compares the energy of the MECI energy

to the vertical absorption in order to determine the viability of internal conversion

through a conical intersection. Our previous work has already proven the efficacy of

this method for aromatic ESIPT materials, which indicates that other nonradiative
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mechanisms can be put aside for now.131,174 We used similar ONIOM Ewald Em-

bedded QM:QM’ Cluster methods (OEEC), to optimise critical regions of the solid

state potential energy surface. We used the Ewald embedding scheme to account for

the long-range electrostatic interactions of the material, which can be important in

polar crystals. We chose the ωB97X-D functional since it has reproduced accurate

ESIPT optimised geometries in the past, and predicts a QM:QM’ absorption energy

of 4.20 eV, as compared to the experimental value of 3.65 eV. The results are depicted

in Figure 6.9.

The conical intersection which involves only a rotation of the oxygenated aryl

bond is the S1–S0 MECI in solution, but becomes very unstable due to the steric hin-

drance of the nearest neighbour molecules upon crystallisation. The S1–S0 MECI

in crystal additionally involves the pyramidalisation of one of the molecular back-

bone carbons, thus reaching a distorted but spatially compatible geometry within

the close packed environment. However due to this distortion, the crystal MECI

remains unstable, surpassing the absorption energy by 1.9 eV. If we use MS-2-

CASPT2(12,12)/aug-cc-pVDZ as the excited state method instead, using the geome-

tries optimised in TDDFT, the results are similar, with an absorption of 3.88 eV—now

only 0.23 eV above the experimental value—and a MECI 2.05 eV above absorption.

In this case, the S1–S0 gap at the MECI geometry is 0.36 eV. Further scanning of

the CASPT2 PES would help narrow this gap, but would be unlikely to reduce the

energy by up to 2.05 eV.

Upon crystallisation, the S1–S0 MECI becomes inaccessible for a molecule excited

at FC point. This blocks the principal nonradiative decay channel, and explains the 8

to 9 fold rise in QEF from measurements in organic solvent and in powder samples.

In this case, alternative nonradiative decay channels are not important enough in

the crystal to prevent the formidable 0.77 efficiency.

nP

p-Hexaphenylene (6P) has been employed as a building block of photonic

nanofibers,215,216 and as a material for nanolasers,217,218 exploiting its amplified

spontaneous emission,219 thanks to its fluorescence and structural characteristics

favourable for growing well-defined molecular architectures.

6P has an experimental fluorescence quantum yield of 0.85 in solution and 0.30
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FIGURE 6.9: HBT energy at critical points of its excited
state potential energy surface. The vacuum calculation used
TD-ωB97X-D/6-31G(d) and the crystal calculation TD-ωB97X-

D/6-31G(d):DFTB.

in crystal,204 whereas the much smaller 3P has a yield of 0.82 in solution220 and

0.67 in crystal.203 We would like to rationalise this difference, also considering the

intermediate case of 4P. In contrast with HBT, these systems are emissive in vacuum,

meaning that their excited state process in vacuum is not dominated by nonradiative

deactivation.

We optimised the structures of the emitting ππ∗ states of 3P, 4P, and 6P, applying

TD-ωB97X-D in cyclohexane solvent using PCM and in the crystal phase with the

QM/QM’ cluster method at the TD-ωB97X-D/DFTB level including one molecule

in the QM region. From the computed S1 energies and oscillator strengths (Table

6.2), several interesting trends can be observed.

As the length of the chain increases from three to four and four to five, the emis-

sion energy decreases. The trend is similar in solution and in crystal where in the

former, the emission energy decreases by 0.20 eV from 3P to 4P and by 0.17 eV from

4P to 6P, and in the latter the differences are 0.21 eV and 0.28 eV.

We can relate this phenomenon to the degree of delocalisation of the transition

density in the different molecular structures. As can be seen in Figure 6.10, in the

case of 3P, the S1 transition density is mostly localised on the central phenyl ring

and surrounding C–C bonds, while in the case of 4P and 6P, it is localised on two

central phenyl rings and surrounding C–C bonds. This delocalisation destabilises

the HOMO and stabilises the LUMO, which contributes to narrowing the S1–S0 en-

ergy gap. This could also explain the increases in oscillator strength by 0.54 and 0.90
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FIGURE 6.10: The energies of HOMO and LUMO orbitals of
3P, 4P, and 6P in the crystal computed at the TD-ωB97X-D/6-
31G(d) level. The S1 transition densities are represented as well.

Molecule E(S1)
sol f sol kEin,sol

r kSB,sol
r Φsol

f λvac E(S1)
cr f cr kcr

r Φcr
f λcr

3P 3.69 1.37 0.81 1.24 0.82220 0.51 3.83 1.19 0.76 0.80a 203 , 0.67b 203 0.35
4P 3.49 1.91 1.01 1.54 - 0.54 3.62 1.74 0.99 - 0.37
6P 3.32 2.81 1.35 2.17 - 0.49 3.34 2.86 1.38 0.30d 0.29

TABLE 6.2: Computed S1 energies in eV (E(S1)) with corre-
sponding oscillator strength ( f ), radiative rates calculated with
the Einstein relation and SB formula in ns−1 (kEin

r , kSB
r ), exper-

imental luminescent efficiency (Φ f ), and reorganisation ener-
gies in eV (λ) for the nP series. The superscripts indicate the
medium, where "sol" is cyclohexane solvent, "vac" is vacuum,

and "cr" is crystal. aPowder samples. b Single crystal.

in solution, and 0.55 and 1.12 in crystal, where a more diffuse transition is corre-

lated with a greater overlap between initial and final wavefunctions and a greater

transition dipole moment.

In comparison with the solution, the crystal environment raises the emission en-

ergy by 0.1 eV and lowers the oscillator strength by 0.2 for 3P and 4P. These effects

are, however, negligible for 6P.

The emission rates, kr, computed applying Einstein relation in solution and crys-

tal and applying the SB relation in solution, increase with backbone length. This is

due to the large increase of oscillator strength relative to the decrease in emission

energy. The kr values in solution and in crystal are very similar throughout the se-

ries due to competing effects of crystallisation increasing the emission energy and

decreasing the oscillator strength for 3P and 4P.

The rates in solution obtained based on the SB relation are about twice as large

as the values obtained from Einstein relation. This is due to the transitions between

vibronic wave functions of the excited and ground states, which the Einstein relation

neglects.
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The decrease in QEF of 6P with respect to 3P is not explained by the behaviour of

radiative rates which instead increase with chain length. This raises the question of

the importance of nonradiative relaxation pathways in this series. We first examine

a rationalisation based on conical intersections, as this was a determining factor for

HBT.

The S1–S0 minimum energy crossing points were optimised at the ADC(2)/def-

SV(P) level in vacuum and crystal for 3P, 4P, and 6P. TD-ωB97X-D/6-31G(d) was

also attempted but electronic convergence problems arose due to the highly dis-

torted conformations involved. Previous studies indicate that ADC(2) can represent

accurate S1–S0 crossing topologies in organic chromophores despite being a single

reference method.76

The optimised vacuum S1–S0 MECI geometries of 3P and 4P, represented in Fig-

ure 6.11, correspond to ring puckering conical intersections with puckered phenyl

rings on which the S1 transition densities are localised. The central phenyl ring at

the MECI geometry of 3P in vacuum is a prefulvene kind of conical intersection,221

characterised by a half-boat structure with the Cs symmetry. The puckering of the

central ring is accompanied by flapping motion of peripheral phenyl rings, resulting

in a highly distorted structure with one phenyl ring roughly perpendicular to the

puckered ring.

However, in the crystal, ring-puckering and flapping motions are partially hin-

dered due to the tight packing. As a result, the crystal S1–S0 MECI geometry has

a different identity, featuring a pronounced puckering of one C atom of the central

ring and substantial out-of-plane distortion of H atom attached to it. The rest of the

molecule remains in plane. This conical intersection corresponds to another point at

the prefulvene CI seam.

Similarly, the S1–S0 MECI structure of 4P in vacuum corresponds to a puckered

half-boat structure of one of the central rings, while the other one, on which transi-

tion density is also localised at the S1 minimum, displays slight out-of-plane distor-

tion.

The 4P S1–S0 MECI structure in crystal phase is similar to the one obtained for

3P. The restriction of large out-of-plane motions can be explained by the herring-

bone packing of these crystals. Figure 6.4 shows how the two prevalent packing
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motifs—herringbone and sheet—produce crystalline dimers with roughly parallel

principal axes. This type of steric hindrance discourages any motion which would

make the backbone of the molecule deviate from the overall principal axis and enter

the ground state configurational space of its nearest neighbours.
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FIGURE 6.11: Energies of S0 and S1 states of 3P and 4P
at the FC point, S1 minima, and S1–S0 MECI in vacuum
(left) and crystal (right) computed at the RI-ADC(2)/def-
SV(P) level. For the comparison, in the case of 3P, the
corresponding CASPT2(10,10)/6-31G(d)//CASSCF(10,10)/6-
31G(d) and CASPT2(8,8)/6-31G(d)//CASSCF(8,8)/6-31G(d)

results are given

For both 3P and 4P, as shown in Figure 6.11, the optimised MECI geome-

tries lie above the S1 excitations at the FC point, both in vacuum and crystal, im-

plying that this kind of internal conversion is inefficient for these systems. The

energy of the 3P vacuum conical intersection, obtained with CASPT2(10,10)/6-

31G(d)//CASSCF(10,10)/6-31G(d), lies 0.30 eV above the S1 excitation at the FC

point. ADC(2) successfully describes the region of the conical intersection of 3P



160 Chapter 6. Application

and predicts the MECI energy close to the value obtained with CASPT2(10,10)/6-

31G(d)//CASSCF(10,10)/6-31G(d), but it overestimates the vertical excitation at the

FC region. In the case of 4P, the vacuum MECI optimised at the ADC(2)/def-SV(P)

level is 0.24 eV above the S1 state at the FC region.

For both systems, the optimised MECI structure in crystal is more energetic com-

pared to the one in vacuum. The MECIs of 3P and 4P lie 0.34 eV and 0.67 eV above

the excitation in the FC region, based on the ADC(2)/def-SV(P) optimisations.

The ADC(2)/def-SV(P) optimised MECI of 6P in vacuum corresponds to a puck-

ering conical intersection with a prefulvene-like structure of the central ring. The rest

of the chain is highly distorted due to rotation of terminal phenyl rings, as shown in

Figure 6.12.
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FIGURE 6.12: Energies of S0 and S1 states of 6P at the FC point,
S1 minima, and S1–S0 MECI in vacuum computed at the RI-
ADC(2)/def-SV(P) level. The MECI structure is represented in

the bottom.

The S1 state at the optimised vacuum S1–S0 MECI is 0.18 eV above the vertical

excitation at the FC point, implying that internal conversion is unfavourable for this

molecule, as shown in Figure 6.12. The conical intersection optimisation in the crys-

tal could only minimise the S1–S0 gap to 0.3 eV, with an energy inversion between

S1 and S0. This shows the inadequacy of single reference methods to characterise

conical intersections in the case of 6P, which is also too large for computationally

affordable and accurate multireference methods. However, multireference methods

confirmed the accuracy of ADC(2) for 3P, so if we assume this to apply to 6P, then

we observe a MECI energy several eV above the FC energy, making it inaccessible.
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Conical intersections are therefore rightly found to be at least partially inacces-

sible for 3P and 4P, bocking this nonradiative decay channel. However this barrier

is even higher in 6P, which has lower QEF than 3P, indicating the importance of

alternative nonradiative decay mechanisms for this crystal.

Another explanation for the increased nonradiative decay rate of 6P due to in-

ternal conversion would be a vibrational nonradiative mechanism. This would be

consistent with the lower S1 energy of 6P, thus enabling large vibrational wavefunc-

tion overlap. However, the low vibrational reorganisation energies of 3P and 6P are

of the same order in solution and in crystal. The Supporting Information shows a

reduction of these energies to 10% upon crystallisation for both systems, which does

not significantly impact the emissivity of 3P.

Stampfl et al. proposed that the decrease of quantum efficiency upon aggrega-

tion in 6P is induced by intermolecular excitonic phenomena.204 This conclusion is

based on a linearly decreasing luminescence efficiency with temperature, instead of

an Arrhenius-type dependence. The former is explained by increased excitonic col-

lision probabilities on higher temperatures, whereas the latter would be associated

with intramolecular vibrational radiationless deactivation.

Exciton hopping rates are quadratically dependent on the exciton coupling

within a crystal, and inverse exponentially dependent on the reorganisation energy,

as shown in Equation 6.4. The exciton coupling in 6P crystals of 95 meV reported in

Table 6.1 is of the same order as for 3P, with 98 meV. In contrast, the total reorgan-

isation energy of 6P in crystal is 0.29 eV, compared to 3P’s 0.35 eV, as can reported

in Table 6.2. This difference results in a hopping rate 1.95 greater in 6P than in 3P,

a ratio approaching that of the different QEFs in crystal. We can postulate that an

increased hopping rate leads to more nonradiative decay due to the mobile exciton

more readily reaching surface, grain boundary, or bulk defects in the material.

In summary, vibrational and nonadiabatic nonradiative decay channels are

mostly blocked in both vacuum and crystal for all members of this series. The

drop in QEF of 6P upon crystallisation is due to its particular property of display-

ing strong exciton couling, whilst having a low reorganisation energy compared to

3P. We can explain this property by the relative sparsity of 6P, with a steric volume

index of 2.27 compared to 3P’s 1.37, allowing for less strained reorganisation, but
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FIGURE 6.13: α-DCS energy at critical points of its excited state
potential energy surface. The vacuum and solvent calculation
used TD-ωB97X-D/6-31G(d) and the crystal calculation TD-

ωB97X-D/6-31G(d):DFTB.

maintaining the high exciton coupling thanks to the length of the 3P backbone max-

imising π–π interactions.

DCS Series

Finally, we investigate the excited state decay channel of another aromatic

molecule with a different structured backbone, based on the DSB molecule. α-DCS

is a DSB derivative displaying in impressive rise of QEF from 0.002 to 0.90 from

solution to single crystal.133

Its geometry was optimised in chloroform solvent using PCM to find its ground

and excited state minima and conical intersection geometry. The results are shown

on Figure 6.13. The absorption energy was 3.84 eV, in close agreement with the

experimental value of 3.80 eV. The FC minimum was characterised by a tilt of the

inner ring with respect to the outer rings of 67.2°, whereas the S1 optimisation led to

a more planar geometry with an angle of 21.3°. This large reorganisation led to an

emission energy of 2.84 eV, shifted 1.01 eV away from the absorption energy.

The molecule was reoptimised in its crystal phase using OEEC. Here, the FC

geometry had a tilt of 62.9° but the planarisation of S1 was significantly hindered,

only reaching 47.1°. We observe that the crystal packing reduces the flexibility of the

molecule, which is calculated to absorb at 3.93 eV and emit at 3.20 eV, producing a

Stokes shift of 0.73, a value smaller than in solution by 0.3 eV.

The increased rigidity also has implications for the geometry of the S1–S0 MECI.
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The access to the conical intersection geometry in solvent for similar molecules has

been characterised by a rotation about a double bond of the backbone, causing one

ring to be on a perpendicular plane from the other two, and a pyramidalisation

of the carbon connecting the rotated ring to the backbone.222 We located a similar

conical intersection for α-DCS, where the rotation was of 88.8° about the same bond

as reported in Reference 222, but involving no pyramidalisation. In either case, the

rotation involved in the access to this S1–S0 MECI supposes a large reorganisation

which represent a quenched nonradiative decay channel in solution, and a blocked

one in crystal. Indeed the crystal packing is too dense to allow for the backbone to

draw an arc of nearly a right angle, instead the penalty function MECI optimisation

algorithm pursues a double bond stretching CI too distorted to evaluate even with

multireference methods.

Other emissive DSB-based molecules have similar molecular backbones and

packing, as shown in Figure 6.4, pointing to a similar quenching of the internal con-

version decay pathway. They have been investigated in a series of studies for their

promising SSL properties.133,222,223 They all have cyano-group (CN) substituents on

the vinylene units which connect their phenylene rings. DBDCS and MODBDCS

have additionally buthoxy-groups (OBu) on lateral phenylene rings at their para

positions. Apart from CN- and OBu-substituents, the MODBDCS molecules are dis-

tinguished by methoxy-groups (OMe) on central phenylene rings in their meta po-

sitions. MODCS is characterised by OMe-substitutions on central phenylene rings.

α- and β-members of the series differ from each other by positions of CN- groups on

vinylene units with respect to the phenylene rings; the former having CN- groups

closer to the central ring, and the latter closer to lateral phenylene rings.

All members of the series are emissive in the crystal form, with higher efficiency

than in solution. In particular, the α- systems are completely non-emissive in solu-

tion. As noted in the previous sections, changes in QEF are understood as a compet-

ing change in radiative and non-radiative rates, with the latter being contributed to

by differing vibrational wavefunction overlap, intermolecular excitonic processes,

and conical intersection accessibilities.

The nonradiative rates only increase upon aggregation for α-DCS and α-MODCS,

as is reported in in Table 6.3.133 Therefore, we can expect an important restriction of
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Molecule ksol
r

133 ksol
nr

133 Φsol
f

133 λvac
low kcr

r
133 kcr

nr
133 Φcr

f
133 λcr

low

α-DCS 0.35 175 0.002 0.095 0.43 0.05 0.90 0.046
α-DBDCS 0.5 250 0.002 0.088 0.05 0.02 0.70 0.016
β-DBDCS 0.45 0.39 0.54 0.090 0.14 0.03 0.84 0.035
α-MODCS 0.11 5.4 0.02 0.094 0.19 0.1 0.66 0.054
β-MODCS 0.15 0.60 0.2 0.089 0.04 0.02 0.73 0.031
α-MODBDCS 0.23 77 0.003 0.059 0.09 0.12 0.42 0.009
β-MODBDCS 0.22 0.50 0.31 0.077 0.02 0.02 0.46 0.009

TABLE 6.3: Experimental radiative rates in ns−1 (kr), nonradia-
tive rates in ns−1 (knr), luminescent efficiency (Φ f ), and com-
puted reorganisation energies for vibrational modes of less than
0.031 eV (250 cm−1) in eV (λlow) for the DCS series. The super-
scripts indicate the medium, where "sol" is chloroform solvent,

"vac" is vacuum, and "cr" is single crystal

nonradiative decay mechanisms upon crystallisation for the series.

Regarding vibrational nonradiative decay, it has been proposed to contribute to

SLE within the Restriction of Intramolecular Motions (RIM) model described in Ref-

erences 224 and 225. The crystallisation is said to quench low energy vibrational

modes, thus impeding the overlap of vibrational wavefunctions between different

excited states, and blocking Fermi-Golden-Rule-style nonradiative decay.

As is shown in Table 6.3 these modes are indeed reduced in the crystal phase

for the DCS series, however less so than in 3P and 6P, whose nonradiatively decay

is thought to principally be through conical intersections and excitonic dissipation.

No clear trends emerge linking the quenching of vibrational modes upon crystalli-

sation to the change in QEF of the systems, though they cannot be excluded as a

contributing factor to the enhanced emission.

To probe for excitonic dissipation, we can focus on the case of the strongest cou-

pled system, β-MODCS, as seen on Table 6.1, with an exciton coupling of 140 meV.

This does not impede a very efficient emission of 0.73, despite its low radiative rate

reported in Table 6.3. As shown in Figure 6.4, most crystals share the characteris-

tic face-to-face dimer packing of sheet-like crystals, indicating that the character of

their excitonic states should not be radically different. The principal exceptions are

α-DCS and α-MODCS, where the former still displays the greatest crystal lumines-

cent efficiency of the series, and the latter a mere 32 meV of exciton coupling. We

can conclude that within this series, excitonic states are either present but not of a
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dissipative character, or absent.

As for the access to conical intersections, there is reported evidence for is impor-

tance in the series. Reference 223 observes a a rise in nonradiative decay rates with

increasing FC energy in solution. This indicates the comparatively low importance

of vibrational decay in the nonradiative rate of this family, due to a lesser overlap be-

tween ground and excited state vibrational wavefunctions in the low nonadiabatic

coupling regime; leaving the RACI mechanism such as the one previously outlined

for α-DCS as the principal cause of SLE.104

The dominance of conical intersection decay in this series can also be linked to

the low but present luminescence of the β- molecules in solution. The position of

the CN- substituents upon the rotating section of the double bond which drives the

access to the conical intersection, at least in α-DCS, can constitute a hindrance to the

the motion.

Moreover, the RACI model, depends on the rigidity of the molecules in the ex-

cited state, where a smaller conformational freedom of the molecule results in fewer

pathways to the conical intersection to restrict. This is consistent with the overall

greatest QEF, attributed to the smallest molecule—α-DCS, with 0.90—and the low-

est QEF to the ones with the most substituent—α-MODBDCS and β-MODBDCS,

with 0.42 and 0.46 respectively.

6.4 Conclusions

In this chapter, we have reviewed the crystalline excited state properties of thirteen

organic molecular crystals with luminescent behaviour. We used a geometry analy-

sis tool to characterise the different nearest neighbour dimers present in these crys-

tals and associate them to particular crystal packing motifs. We observed that within

one series of similar molecules–DSB derivatives–the packing motif determined the

centroid-to-centroid distance of the resulting molecules.

This distance was shown to have direct implications as to the value of the exci-

ton coupling between constituent fragments. Chemically different molecules were

found to have similar exciton coupling values within a range of 50 meV. The weak-

ness of this model was highlighted in the HBT crystal, where the centroid of the
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molecules is far away from the area with most electronic reorganisation upon exci-

tation.

We also observed that the exciton coupling values accessible to dimers in their vi-

brational phase space are not particularly dependent on the intermolecular arrange-

ment. Indeed the vibrations are mostly determined by the molecular structure, and

dictate the broadness of values of the exciton coupling.

We then investigated the internal conversion decay channels for five of the crys-

tals and how they were affected by their crystal environment. For these luminescent

materials, the conical intersection energy was systematically found to be higher than

the absorption energy, in crystal, pointing to a quenching due to steric hindrance.

Molecules with rotation involved in their vacuum phase conical intersection were

likelier to have a higher energy crystal conical intersection. In contrast, ones which

had puckered geometries in vacuum found alternate puckering patterns in the crys-

tal with close to equivalent energy profiles. Clear links between the access to the

conical intersection and the QEF were drawn for HBT and DCS systems. Vibrational

decay was not directly shown to have a significant role in the darkness of any sys-

tems in the vacuum, and was further discouraged in the crystal by the quenching of

low energy normal modes. Finally, excitonic dissipation was proposed as a deter-

mining mechanism explaining the different QEFs of the nP series.

Overall, excited state decay mechanisms remain relatively system specific due to

the formidable breadth of chemical space. Fluorescence, internal conversion, and ex-

citonic dissipation are competing mechanisms, interlinked by their relation to crystal

structure. The complexity of this relationship is exemplified by the diverse lumines-

cent behaviour in solution of the molecules in this study, despite their consistent

efficient luminescence in as crystals. Programs like fromage prove themselves to be

essential in disentangling the holistic mechanisms behind such phenomena.
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Conclusions

Summary

This thesis offered a detailed account of the development, implementation, and ap-

plication of a new suite of tools for the study of excited states in molecular crys-

tals. Initially, we were interested in applying the self-consistent Ewald embedding

scheme of Wilbraham et. al17 to our own set of proton transfer crystals, 2’hydroxy-

chalcones, with a focus on the SLE mechanism. It quickly surfaced that due to the

comparative flexibility of our compounds, a simple point charge embedding scheme

would need to be complemented by short range interactions, in order to allow for a

realistic exploration of the PES.

This led us to the development of the ONIOM Ewald Embedded Cluster mod-

els described in Chapter 4. Therein, we used a hierarchy of models to recover

the correct emissive behaviour of two crystals, HC1 and HC2, only the former of

which displayed Solid State Luminescent Enhancement. Our new and most ac-

curate method combined ONIOM QM:QM’ with Ewald point charge embedding,

in order to eliminate the electrostatic truncation error that accompanies traditional

ONIOM QM:QM’ in periodic systems. Not only were we able to correctly describe

non-Born-Oppenheimer regions of the PES in order to describe Solid State Lumines-

cent Enhancement in these materials using the Restricted Access to Conical Intersec-

tions model, we also found emission energies within 0.2 eV of the experimentally

observed ones, a result overestimated both by QM:MM and traditional QM:QM’.

The implementation of a hybrid level of theory method into a program immedi-

ately hinted to the development of a programming library, since allowing the user a

great degree of flexibility was paramount. This paved the way for the development

of fromage, described in Chapter 5. Along with these ONIOM methods, many other

tools were developed by our group since 2016 to aid in the study of molecular crystal
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excited states, and they were all implemented in fromage. Working with molecules,

finite cluster models, and unit cells all at once started off as a very time intensive

task from a practical point of view, because of the niche geometry manipulation op-

erations which were ubiquitous as part of the workflow, and the decentralisation

of post-processing analysis tools. fromage has streamlined these processes signif-

icantly by translating these geometrical objects into Python. This allowed for the

development of tools to analyse characteristic dimer geometries within aggregates

and manipulate different classes of clusters. It was also used to investigate excited

state electronic structures, allowing for the classification of excitonic states, and the

evaluation their exciton coupling.

With this arsenal of tools at hand, we broadened our scope, to investigate larger

families of compounds. Chapter 6 offered a study of thirteen emissive molecu-

lar crystals, with different luminescent properties in solution. The competition be-

tween radiative and nonradiative decay pathways was explored, highlighting how

both vibrational decay and internal conversion via conical intersection needed to be

quenched in the crystal, without introducing additional excitonic dissipation mecha-

nisms. In our systems, low frequency normal modes were significantly quenched by

crystallisation, disfavouring vibrational decay, regardless of its importance in vac-

uum. The conical intersection was systematically found to be level with or higher

in energy than the absorption energy in crystal, thus blocking this channel by the

means of steric hindrance. Conical intersections tended to involve puckering in the

crystal, which was found to destabilised them more than rotational conical inter-

sections. Energy dissipation through excitonic delocalisation was controlled for by

comparing both exciton coupling values and reorganisation energies between differ-

ent dimers in the crystal.

Of the objectives outlined in the introduction, the first three (extending system-

environment interactions, identifying an optimal point charge scheme, probing the

response of the environment) are addressed by Chapter 4. The fourth objective, of

producing a tailored implementation of these methods to molecular crystals is ad-

dressed by Chapter 5. The role of Chapter 6 is to demonstrate the use and robustness

of the outcomes of the previous two chapters.

This doctoral project has therefore produced all of the key steps to enable the
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modelling of photochemical processes in molecular crystals within a level of accu-

racy which would previously have been impossible for certain systems. The fromage

package is already in use on at least three continents, and will unlock new areas of

study for future researchers. Readers can find the source code and documentation

here:

https://github.com/Crespo-Otero-group/fromage

https://fromage.readthedocs.io

Outlook

Point Charge Description

The point charge approximation for the potential emanating from an atom, upon

which hinges the ONIOM QM:QM’ formalisms described herein, has shown to reach

its limits when combined with too diffuse densities. This limits the amount of sys-

tems for which these methods could be applicable, as well as the size of the basis

set.

We can fathom a whole family of substitutes for the point charges of the

molecules, each with its own advantages. A first solution would be to introduce a

local repulsive term to the Coulomb interaction of each point charge, accounting for

the Pauli repulsion of the atom. This would require parameterisation, but keep the

complexity of the embedding scheme to a minimum. Alternatively, smoothing out

the point charge potential as Gaussian functions, with a finite cusp, would limit un-

physical solutions due to infinite potential wells, but would not account for atomic

repulsion.

Embedding the excited state Hamiltonian higher orders of the multipole expan-

sion would further help recover mutual polarisation more naturally than in the

self-consistent scheme, whilst keeping the modelling cost to a minimum. Here, the

implementation aspect becomes arduous due to the scarcity of electronic structure

codes accepting this sort of embedding. Additionally, determining the value of the

multipoles representing the environment is not trivial. This polarisation could also

be achieved by combining the point charges with a polarisable continuum model,226

which would involve parameterising the dielectric constant of the material.

https://github.com/Crespo-Otero-group/fromage
https://fromage.readthedocs.io
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Finally, the interaction between system and environment could be treated in a

Rayleigh-Shrödinger perturbative way, accounting for accurate Coulomb interac-

tions, polarisation, dispersion, and exchange provided a symmetry-adapted formu-

lation.227,228 The implementation of a Symmetry-Adapted Perturbation Theory to

excited states with ONIOM has yet to be fully developed.

Geometry Optimisation

Currently, the implementation of ONIOM schemes only accounts for the optimisa-

tion of region 1 of the crystal. Optimising region 2 would allow for the modelling

of many-body reorganisation within the crystal, which could be critical in some sys-

tems.

Allowing for the optimisation of region 2 would require a careful consideration

of the conservation of energy in the ONIOM equation, and importantly an Ewald

embedding for this region.

Additionally, the current method for optimising conical intersections is the

penalty function method. This has the advantage of forgoing the need for derivative

and nonadiabatic coupling vectors. However those quantities are available in sev-

eral packages already interfaced with fromage, meaning that they could be exploited

to locate conical intersections faster and more precisely.

Ewald Potential

Currently, the Madelung sum of the crystal is accounted for by varying point

charge values to reproduce an Ewald potential. This is all handled by the program

Ewald,113,114 which was initially devised for ionic systems with a quantum region

much smaller than the clusters which are relevant to molecular crystals.

A new implementation of this Ewald scheme would benefit the program hugely,

by being tailored to these cluster geometries, and removing implementation prob-

lems which arise at large length scales. Other schemes also exist to mimic the result

of an Ewald sum which may require fewer point charges or computational power to

match,229 such as the Wolf sum.230
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Appendix A

Supporting Information for the

Ewald Embedded Cluster

A.1 Crystal Structures

The experimental crystal structures for HC1 and HC2 are accessible on the Cam-

bridge Structural Database with codes 941991 and 1061608 respectively.134

A.2 Absorption and Emission Spectra

To consider the effect of vibrations on the position of the absorption and emis-

sion maxima, we simulate both spectra with the nuclear ensemble approach as

implemented in Newton-X.160,184 They are shown in Figure A.1. For each scheme,

the monomer was first optimised to the FC and K* geometries for absorption and

emission. The vibrational modes were calculated using ωB97X-D/6-311++G(d,p) in

Gaussian139 in the presence of the point charges from the embedding model.
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FIGURE A.1: Absorption and emission spectra for both
molecules with experimental data134 for comparison. The ex-
perimental emission for HC2 is smoothed with a Savitzky-

Golay filter.

A.3 Population Analysis for Aggregates

RESP charges respond directly to the electrostatic environment of the atom. As such

they are a measure of the quality of the embedding method. In Figure A.2 we com-

pare the RESP charges of notable atoms on monomers embedded in different charge

backgrounds to those calculated in tetramers embedded using OEEC. In this case

the central molecule is in the FC geometry. The results for K* are in Figure A.3.
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FIGURE A.2: Deviation of charge on notable atoms from the
explicitly calculated tetramer with the relaxing molecule in FC
geometry. In the top row, the molecule is optimised with OEEC
and in the bottom with SC-OEEC-S1. We compare the charge
obtained from the monomer population analysis of in vacuum
S0, S1 and in EEC and SC-OEEC-S1. The absolute average
charge in the tetramer is indicated by horizontal ticks, positive
values are in grey and negative ones in black. The atom labels

are the ones found in Figure 1 of the main text.
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FIGURE A.3: Deviation of charge on notable atoms from the
explicitly calculated tetramer with the relaxing molecule in K*
geometry. In the top row, the molecule is optimised with OEEC
and in the bottom with SC-OEEC-S1. We compare the charge
obtained from the monomer population analysis of in vacuum
S0, S1 and in EEC and SC-OEEC-S1. The absolute average
charge in the tetramer is indicated by horizontal ticks, positive
values are in grey and negative ones in black. The atom labels

are the ones found in Figure 1 of the main text.
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in either molecule. The diameter of the circles is proportional
to the charge difference.

A.4 Vertical Excitation for Aggregate

The bright state of HC2 has a different identity depending on the charge back-

ground. We illustrate this in Figs A.5 and A.6.
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FIGURE A.5: Density plots for the absorption of HC1 under
OEEC and SC-OEEC. The for each excited state n, the difference
in electronic density Sn–S0 is plotted where positive values are
shown in orange and negative values in blue. The bright state

is highlighted in pink.
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FIGURE A.6: Density plots for the absorption of HC2 under
OEEC and SC-OEEC. For each excited state n, the difference
in electronic density Sn–S0 is plotted where positive values are
shown in orange and negative values in blue. The bright state

is highlighted in pink.

A.5 Exciton Coupling in Dimers

Dimeric exciton couplings were computed using the diabatisation scheme devised

by Aragó and Troisi.105 In this scheme, a diabatisation excited state property is se-

lected. (1) It is first evaluated for the dimer in S1 and S2, along with the excited

state energy. (2) It is also calculated for the constituent monomers of the dimer. (3)

Then, a singular-value decomposition is employed to determine the matrix which

best transforms the property from the adiabatic to the diabatic basis. (4) Finally, the

newly obtained diabatisation matrix is used to transform the adiabatic Hamiltonian

into the diabatic one. The latter’s off-diagonal elements are the desired J exciton

coupling values.

More details are offered in section 5.3.2. The results for HC1 and HC2 are shown

in Table A.1. Also shown are the couplings obtained using half of the energy gap

between S1 and S2 in the dimer.
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TABLE A.1: Exciton couplings (eV) for the different fragments
involved in the tetramers computed with the diabatisation
scheme. In parenthesis is half the energy splitting between S1
and S2. The dimers A, B and C are shown in the Figure 6 of the

main text

Dimer HC1 HC2

A 0.012 (0.012) 0.116 (0.117)

B 0.108 (0.109) 0.148 (0.148)

C 0.061 (0.063) 0.001 (0.003)

A.6 Results with CC2 and CASPT2

TABLE A.2: Table of absorption and emission energies with RI-
CC2 and multireference methods for both model systems after

geometry optimisation. The energies are in eV

Cluster model Method
HC1 HC2

FC K* FC K*

OEEC

RI-CC2/TZVP 2.99 1.08 3.11 0.97

RI-CC2/TZVP//TD-ωB97X-D/6-311++G(d,p) 3.08 1.48 3.20 1.62

CASPT2/6-31G(d)//CASSCF/6-31G(d) 3.53 1.41 - -

CASPT2/6-31G(d)//TD-ωB97X-D/6-311++G(d,p) 3.52 1.74 - -

SC-OEEC S1

RI-CC2/TZVP 2.61 1.41 2.99 1.03

RI-CC2/TZVP//TD-ωB97X-D/6-311++G(d,p) 2.68 2.19 3.07 1.73

CASPT2/6-31G(d)//CASSCF/6-31G(d) 3.06 1.50 - -

CASPT2/6-31G(d)//TD-ωB97X-D/6-311++G(d,p) 3.01 2.27 - -
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Supporting Information for the

Applications

B.1 Geometries

The optimised geometries of the molecules discussed in the main paper are de-

posited at: https://github.com/Crespo-Otero-group/paper_data

B.2 Crystal Structures

All crystal structures were obtained from the Cambridge Crystallographic Database.

The ones available freely are listed in Table B.1. As of writing this paper, αMODCS,

βMODCS, αMODBDCS, and βMODBDCS do not have deposited structures.223

Crystal CCDC ID

DSB 921998
4PV 129139
HBT 727487
3P 1269382
4P 1245769
6P 1319661
αDCS 1247728
αDBDCS 778284
βDBDCS 969314

TABLE B.1: Cambridge Crystallographic Data Centre (CCDC)
IDs for the corresponding crystal structures.

https://github.com/Crespo-Otero-group/paper_data
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System
Reorganisation energy (cm−1)

Vacuum Crystal

ω ≤ 250 ω > 250 Total ω ≤ 250 ω > 250 Total

3P 912.7 3221.3 4134 64.6 2791.4 2856
4P 1423.7 2948.3 4372 383.6 2560.4 2944
6P 912.6 3075.4 3988 104.3 2230.7 2335
αDCS 764.9 2550.1 3315 370.7 2335.3 2706
αDBDCS 705.9 2228.1 2934 129.6 1916.4 2046
βDBDCS 724.6 2593.4 3318 286.2 2672.8 2959
αMODCS 756.2 2675.8 3432 433.7 2013.3 2447
βMODCS 721.6 1777.4 2499 252.3 1990.7 2243
αMODBDCS 473.3 1971.7 2445 71.7 1878.3 1950
βMODBDCS 617 2106 2723 75.6 1792.4 1868

TABLE B.2: Reorganisation energies for normal modes of the
nP and DCS series, in vacuum and crystal, split between low

and high energy normal modes.

B.3 Active Space

CASSCF and CASPT2 were carried out for 3P and HBT. The active spaces are re-

ported in Figure B.1.

B.4 Full Normal Mode Analysis

The reorganisation energies in vacuum and in crystal discussed in the main paper

are only the ones below 250 cm−1. Here, we include the rest of the energies:
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π

π*

3P HBT

-

-

πππππ
π*π*π*π*π*

FIGURE B.1: Active spaces of 3P and HBT for multireference
calculations.
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